2018-03-08 14:05:02 +01:00
|
|
|
//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \file
|
|
|
|
///
|
|
|
|
/// This file implements the InstrBuilder interface.
|
|
|
|
///
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "InstrBuilder.h"
|
2018-06-20 12:08:11 +02:00
|
|
|
#include "llvm/ADT/APInt.h"
|
2018-06-04 14:23:07 +02:00
|
|
|
#include "llvm/ADT/DenseMap.h"
|
2018-03-08 14:05:02 +01:00
|
|
|
#include "llvm/MC/MCInst.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
2018-05-04 15:52:12 +02:00
|
|
|
#include "llvm/Support/WithColor.h"
|
2018-07-09 14:30:55 +02:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2018-03-08 14:05:02 +01:00
|
|
|
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
|
2018-10-30 16:56:08 +01:00
|
|
|
namespace llvm {
|
2018-03-08 14:05:02 +01:00
|
|
|
namespace mca {
|
|
|
|
|
2018-10-25 13:51:34 +02:00
|
|
|
InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
|
|
|
|
const llvm::MCInstrInfo &mcii,
|
|
|
|
const llvm::MCRegisterInfo &mri,
|
|
|
|
const llvm::MCInstrAnalysis &mcia)
|
|
|
|
: STI(sti), MCII(mcii), MRI(mri), MCIA(mcia) {
|
|
|
|
computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
|
|
|
|
}
|
|
|
|
|
2018-03-24 17:05:36 +01:00
|
|
|
static void initializeUsedResources(InstrDesc &ID,
|
|
|
|
const MCSchedClassDesc &SCDesc,
|
|
|
|
const MCSubtargetInfo &STI,
|
|
|
|
ArrayRef<uint64_t> ProcResourceMasks) {
|
2018-03-08 14:05:02 +01:00
|
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
|
|
|
|
|
|
// Populate resources consumed.
|
|
|
|
using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
|
|
|
|
std::vector<ResourcePlusCycles> Worklist;
|
2018-06-04 14:23:07 +02:00
|
|
|
|
|
|
|
// Track cycles contributed by resources that are in a "Super" relationship.
|
|
|
|
// This is required if we want to correctly match the behavior of method
|
|
|
|
// SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
|
|
|
|
// of "consumed" processor resources and resource cycles, the logic in
|
|
|
|
// ExpandProcResource() doesn't update the number of resource cycles
|
|
|
|
// contributed by a "Super" resource to a group.
|
|
|
|
// We need to take this into account when we find that a processor resource is
|
|
|
|
// part of a group, and it is also used as the "Super" of other resources.
|
|
|
|
// This map stores the number of cycles contributed by sub-resources that are
|
|
|
|
// part of a "Super" resource. The key value is the "Super" resource mask ID.
|
|
|
|
DenseMap<uint64_t, unsigned> SuperResources;
|
|
|
|
|
2018-11-09 20:30:20 +01:00
|
|
|
unsigned NumProcResources = SM.getNumProcResourceKinds();
|
|
|
|
APInt Buffers(NumProcResources, 0);
|
|
|
|
|
2018-03-08 14:05:02 +01:00
|
|
|
for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
|
|
|
|
const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
|
|
|
|
const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
|
|
|
|
uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
|
|
|
|
if (PR.BufferSize != -1)
|
2018-11-09 20:30:20 +01:00
|
|
|
Buffers.setBit(PRE->ProcResourceIdx);
|
2018-03-08 14:05:02 +01:00
|
|
|
CycleSegment RCy(0, PRE->Cycles, false);
|
|
|
|
Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
|
2018-06-04 14:23:07 +02:00
|
|
|
if (PR.SuperIdx) {
|
|
|
|
uint64_t Super = ProcResourceMasks[PR.SuperIdx];
|
|
|
|
SuperResources[Super] += PRE->Cycles;
|
|
|
|
}
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Sort elements by mask popcount, so that we prioritize resource units over
|
|
|
|
// resource groups, and smaller groups over larger groups.
|
2018-09-28 12:47:24 +02:00
|
|
|
sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
|
|
|
|
unsigned popcntA = countPopulation(A.first);
|
|
|
|
unsigned popcntB = countPopulation(B.first);
|
|
|
|
if (popcntA < popcntB)
|
|
|
|
return true;
|
|
|
|
if (popcntA > popcntB)
|
|
|
|
return false;
|
|
|
|
return A.first < B.first;
|
|
|
|
});
|
2018-03-08 14:05:02 +01:00
|
|
|
|
|
|
|
uint64_t UsedResourceUnits = 0;
|
|
|
|
|
|
|
|
// Remove cycles contributed by smaller resources.
|
|
|
|
for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
|
|
|
|
ResourcePlusCycles &A = Worklist[I];
|
|
|
|
if (!A.second.size()) {
|
|
|
|
A.second.NumUnits = 0;
|
|
|
|
A.second.setReserved();
|
|
|
|
ID.Resources.emplace_back(A);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
ID.Resources.emplace_back(A);
|
|
|
|
uint64_t NormalizedMask = A.first;
|
|
|
|
if (countPopulation(A.first) == 1) {
|
|
|
|
UsedResourceUnits |= A.first;
|
|
|
|
} else {
|
|
|
|
// Remove the leading 1 from the resource group mask.
|
|
|
|
NormalizedMask ^= PowerOf2Floor(NormalizedMask);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned J = I + 1; J < E; ++J) {
|
|
|
|
ResourcePlusCycles &B = Worklist[J];
|
|
|
|
if ((NormalizedMask & B.first) == NormalizedMask) {
|
2018-10-02 01:01:45 +02:00
|
|
|
B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
|
2018-03-08 14:05:02 +01:00
|
|
|
if (countPopulation(B.first) > 1)
|
|
|
|
B.second.NumUnits++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// A SchedWrite may specify a number of cycles in which a resource group
|
|
|
|
// is reserved. For example (on target x86; cpu Haswell):
|
|
|
|
//
|
|
|
|
// SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
|
|
|
|
// let ResourceCycles = [2, 2, 3];
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// This means:
|
|
|
|
// Resource units HWPort0 and HWPort1 are both used for 2cy.
|
|
|
|
// Resource group HWPort01 is the union of HWPort0 and HWPort1.
|
|
|
|
// Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
|
|
|
|
// will not be usable for 2 entire cycles from instruction issue.
|
|
|
|
//
|
|
|
|
// On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
|
|
|
|
// of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
|
|
|
|
// extra delay on top of the 2 cycles latency.
|
|
|
|
// During those extra cycles, HWPort01 is not usable by other instructions.
|
|
|
|
for (ResourcePlusCycles &RPC : ID.Resources) {
|
|
|
|
if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
|
|
|
|
// Remove the leading 1 from the resource group mask.
|
|
|
|
uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
|
|
|
|
if ((Mask & UsedResourceUnits) == Mask)
|
|
|
|
RPC.second.setReserved();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-11-09 20:30:20 +01:00
|
|
|
// Identify extra buffers that are consumed through super resources.
|
|
|
|
for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
|
|
|
|
for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
|
|
|
|
const MCProcResourceDesc &PR = *SM.getProcResource(I);
|
|
|
|
if (PR.BufferSize == -1)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
uint64_t Mask = ProcResourceMasks[I];
|
|
|
|
if (Mask != SR.first && ((Mask & SR.first) == SR.first))
|
|
|
|
Buffers.setBit(I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now set the buffers.
|
|
|
|
if (unsigned NumBuffers = Buffers.countPopulation()) {
|
|
|
|
ID.Buffers.resize(NumBuffers);
|
|
|
|
for (unsigned I = 0, E = NumProcResources; I < E && NumBuffers; ++I) {
|
|
|
|
if (Buffers[I]) {
|
|
|
|
--NumBuffers;
|
|
|
|
ID.Buffers[NumBuffers] = ProcResourceMasks[I];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-05-14 14:53:11 +02:00
|
|
|
LLVM_DEBUG({
|
2018-03-08 14:05:02 +01:00
|
|
|
for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
|
|
|
|
dbgs() << "\t\tMask=" << R.first << ", cy=" << R.second.size() << '\n';
|
|
|
|
for (const uint64_t R : ID.Buffers)
|
|
|
|
dbgs() << "\t\tBuffer Mask=" << R << '\n';
|
2018-03-20 13:58:34 +01:00
|
|
|
});
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
|
|
|
|
const MCSchedClassDesc &SCDesc,
|
|
|
|
const MCSubtargetInfo &STI) {
|
|
|
|
if (MCDesc.isCall()) {
|
|
|
|
// We cannot estimate how long this call will take.
|
|
|
|
// Artificially set an arbitrarily high latency (100cy).
|
2018-03-13 16:59:59 +01:00
|
|
|
ID.MaxLatency = 100U;
|
|
|
|
return;
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
2018-03-13 16:59:59 +01:00
|
|
|
int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
|
|
|
|
// If latency is unknown, then conservatively assume a MaxLatency of 100cy.
|
|
|
|
ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
2018-11-23 21:26:57 +01:00
|
|
|
static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
|
|
|
|
// Variadic opcodes are not correctly supported.
|
|
|
|
if (MCDesc.isVariadic()) {
|
|
|
|
if (MCI.getNumOperands() - MCDesc.getNumOperands()) {
|
|
|
|
return make_error<InstructionError<MCInst>>(
|
|
|
|
"Don't know how to process this variadic opcode.", MCI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Count register definitions, and skip non register operands in the process.
|
|
|
|
unsigned I, E;
|
|
|
|
unsigned NumExplicitDefs = MCDesc.getNumDefs();
|
|
|
|
for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
|
|
|
|
const MCOperand &Op = MCI.getOperand(I);
|
|
|
|
if (Op.isReg())
|
|
|
|
--NumExplicitDefs;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (NumExplicitDefs) {
|
|
|
|
return make_error<InstructionError<MCInst>>(
|
|
|
|
"Expected more register operand definitions.", MCI);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (MCDesc.hasOptionalDef()) {
|
|
|
|
// Always assume that the optional definition is the last operand.
|
|
|
|
const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
|
|
|
|
if (I == MCI.getNumOperands() || !Op.isReg()) {
|
|
|
|
std::string Message =
|
|
|
|
"expected a register operand for an optional definition. Instruction "
|
|
|
|
"has not been correctly analyzed.";
|
|
|
|
return make_error<InstructionError<MCInst>>(Message, MCI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ErrorSuccess();
|
|
|
|
}
|
|
|
|
|
|
|
|
void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
|
|
|
|
unsigned SchedClassID) {
|
2018-07-09 14:30:55 +02:00
|
|
|
const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
|
|
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
|
|
const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
|
|
|
|
|
2018-11-23 21:26:57 +01:00
|
|
|
// Assumptions made by this algorithm:
|
|
|
|
// 1. The number of explicit and implicit register definitions in a MCInst
|
|
|
|
// matches the number of explicit and implicit definitions according to
|
|
|
|
// the opcode descriptor (MCInstrDesc).
|
|
|
|
// 2. Uses start at index #(MCDesc.getNumDefs()).
|
|
|
|
// 3. There can only be a single optional register definition, an it is
|
|
|
|
// always the last operand of the sequence (excluding extra operands
|
|
|
|
// contributed by variadic opcodes).
|
2018-03-08 14:05:02 +01:00
|
|
|
//
|
|
|
|
// These assumptions work quite well for most out-of-order in-tree targets
|
|
|
|
// like x86. This is mainly because the vast majority of instructions is
|
|
|
|
// expanded to MCInst using a straightforward lowering logic that preserves
|
|
|
|
// the ordering of the operands.
|
2018-11-23 21:26:57 +01:00
|
|
|
//
|
|
|
|
// About assumption 1.
|
|
|
|
// The algorithm allows non-register operands between register operand
|
|
|
|
// definitions. This helps to handle some special ARM instructions with
|
|
|
|
// implicit operand increment (-mtriple=armv7):
|
|
|
|
//
|
|
|
|
// vld1.32 {d18, d19}, [r1]! @ <MCInst #1463 VLD1q32wb_fixed
|
|
|
|
// @ <MCOperand Reg:59>
|
|
|
|
// @ <MCOperand Imm:0> (!!)
|
|
|
|
// @ <MCOperand Reg:67>
|
|
|
|
// @ <MCOperand Imm:0>
|
|
|
|
// @ <MCOperand Imm:14>
|
|
|
|
// @ <MCOperand Reg:0>>
|
|
|
|
//
|
|
|
|
// MCDesc reports:
|
|
|
|
// 6 explicit operands.
|
|
|
|
// 1 optional definition
|
|
|
|
// 2 explicit definitions (!!)
|
|
|
|
//
|
|
|
|
// The presence of an 'Imm' operand between the two register definitions
|
|
|
|
// breaks the assumption that "register definitions are always at the
|
|
|
|
// beginning of the operand sequence".
|
|
|
|
//
|
|
|
|
// To workaround this issue, this algorithm ignores (i.e. skips) any
|
|
|
|
// non-register operands between register definitions. The optional
|
|
|
|
// definition is still at index #(NumOperands-1).
|
|
|
|
//
|
|
|
|
// According to assumption 2. register reads start at #(NumExplicitDefs-1).
|
|
|
|
// That means, register R1 from the example is both read and written.
|
2018-03-08 14:05:02 +01:00
|
|
|
unsigned NumExplicitDefs = MCDesc.getNumDefs();
|
|
|
|
unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
|
|
|
|
unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
|
|
|
|
unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
|
|
|
|
if (MCDesc.hasOptionalDef())
|
|
|
|
TotalDefs++;
|
2018-11-23 21:26:57 +01:00
|
|
|
|
2018-03-08 14:05:02 +01:00
|
|
|
ID.Writes.resize(TotalDefs);
|
|
|
|
// Iterate over the operands list, and skip non-register operands.
|
|
|
|
// The first NumExplictDefs register operands are expected to be register
|
|
|
|
// definitions.
|
|
|
|
unsigned CurrentDef = 0;
|
|
|
|
unsigned i = 0;
|
|
|
|
for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
|
|
|
|
const MCOperand &Op = MCI.getOperand(i);
|
|
|
|
if (!Op.isReg())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
WriteDescriptor &Write = ID.Writes[CurrentDef];
|
|
|
|
Write.OpIndex = i;
|
|
|
|
if (CurrentDef < NumWriteLatencyEntries) {
|
|
|
|
const MCWriteLatencyEntry &WLE =
|
|
|
|
*STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
|
|
|
|
// Conservatively default to MaxLatency.
|
2018-07-09 14:30:55 +02:00
|
|
|
Write.Latency =
|
|
|
|
WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
|
2018-03-08 14:05:02 +01:00
|
|
|
Write.SClassOrWriteResourceID = WLE.WriteResourceID;
|
|
|
|
} else {
|
|
|
|
// Assign a default latency for this write.
|
|
|
|
Write.Latency = ID.MaxLatency;
|
|
|
|
Write.SClassOrWriteResourceID = 0;
|
|
|
|
}
|
|
|
|
Write.IsOptionalDef = false;
|
2018-05-14 14:53:11 +02:00
|
|
|
LLVM_DEBUG({
|
2018-11-23 21:26:57 +01:00
|
|
|
dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
|
2018-07-13 16:55:47 +02:00
|
|
|
<< ", Latency=" << Write.Latency
|
2018-03-20 13:58:34 +01:00
|
|
|
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
|
|
|
|
});
|
2018-03-08 14:05:02 +01:00
|
|
|
CurrentDef++;
|
|
|
|
}
|
|
|
|
|
2018-11-23 21:26:57 +01:00
|
|
|
assert(CurrentDef == NumExplicitDefs &&
|
|
|
|
"Expected more register operand definitions.");
|
2018-03-08 14:05:02 +01:00
|
|
|
for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
|
|
|
|
unsigned Index = NumExplicitDefs + CurrentDef;
|
|
|
|
WriteDescriptor &Write = ID.Writes[Index];
|
2018-06-22 18:37:05 +02:00
|
|
|
Write.OpIndex = ~CurrentDef;
|
2018-03-08 14:05:02 +01:00
|
|
|
Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
|
2018-04-02 15:46:49 +02:00
|
|
|
if (Index < NumWriteLatencyEntries) {
|
|
|
|
const MCWriteLatencyEntry &WLE =
|
|
|
|
*STI.getWriteLatencyEntry(&SCDesc, Index);
|
|
|
|
// Conservatively default to MaxLatency.
|
2018-07-09 14:30:55 +02:00
|
|
|
Write.Latency =
|
|
|
|
WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
|
2018-04-02 15:46:49 +02:00
|
|
|
Write.SClassOrWriteResourceID = WLE.WriteResourceID;
|
|
|
|
} else {
|
|
|
|
// Assign a default latency for this write.
|
|
|
|
Write.Latency = ID.MaxLatency;
|
|
|
|
Write.SClassOrWriteResourceID = 0;
|
|
|
|
}
|
|
|
|
|
2018-03-08 14:05:02 +01:00
|
|
|
Write.IsOptionalDef = false;
|
|
|
|
assert(Write.RegisterID != 0 && "Expected a valid phys register!");
|
2018-07-13 16:55:47 +02:00
|
|
|
LLVM_DEBUG({
|
2018-11-23 21:26:57 +01:00
|
|
|
dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
|
2018-07-13 16:55:47 +02:00
|
|
|
<< ", PhysReg=" << MRI.getName(Write.RegisterID)
|
|
|
|
<< ", Latency=" << Write.Latency
|
|
|
|
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
|
|
|
|
});
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if (MCDesc.hasOptionalDef()) {
|
2018-11-23 21:26:57 +01:00
|
|
|
WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
|
|
|
|
Write.OpIndex = MCDesc.getNumOperands() - 1;
|
2018-03-08 14:05:02 +01:00
|
|
|
// Assign a default latency for this write.
|
|
|
|
Write.Latency = ID.MaxLatency;
|
|
|
|
Write.SClassOrWriteResourceID = 0;
|
|
|
|
Write.IsOptionalDef = true;
|
2018-11-23 21:26:57 +01:00
|
|
|
LLVM_DEBUG({
|
|
|
|
dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
|
|
|
|
<< ", Latency=" << Write.Latency
|
|
|
|
<< ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
|
|
|
|
});
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-11-23 21:26:57 +01:00
|
|
|
void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
|
|
|
|
unsigned SchedClassID) {
|
2018-07-09 14:30:55 +02:00
|
|
|
const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
|
2018-11-23 21:26:57 +01:00
|
|
|
unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
|
2018-03-08 14:05:02 +01:00
|
|
|
unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
|
2018-11-23 21:26:57 +01:00
|
|
|
// Remove the optional definition.
|
|
|
|
if (MCDesc.hasOptionalDef())
|
|
|
|
--NumExplicitUses;
|
2018-03-08 14:05:02 +01:00
|
|
|
unsigned TotalUses = NumExplicitUses + NumImplicitUses;
|
|
|
|
|
|
|
|
ID.Reads.resize(TotalUses);
|
2018-11-23 21:26:57 +01:00
|
|
|
for (unsigned I = 0; I < NumExplicitUses; ++I) {
|
|
|
|
ReadDescriptor &Read = ID.Reads[I];
|
|
|
|
Read.OpIndex = MCDesc.getNumDefs() + I;
|
|
|
|
Read.UseIndex = I;
|
2018-03-08 14:05:02 +01:00
|
|
|
Read.SchedClassID = SchedClassID;
|
2018-11-23 21:26:57 +01:00
|
|
|
LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex
|
2018-07-13 16:55:47 +02:00
|
|
|
<< ", UseIndex=" << Read.UseIndex << '\n');
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
2018-11-23 21:26:57 +01:00
|
|
|
// For the purpose of ReadAdvance, implicit uses come directly after explicit
|
|
|
|
// uses. The "UseIndex" must be updated according to that implicit layout.
|
|
|
|
for (unsigned I = 0; I < NumImplicitUses; ++I) {
|
|
|
|
ReadDescriptor &Read = ID.Reads[NumExplicitUses + I];
|
|
|
|
Read.OpIndex = ~I;
|
|
|
|
Read.UseIndex = NumExplicitUses + I;
|
|
|
|
Read.RegisterID = MCDesc.getImplicitUses()[I];
|
2018-03-08 14:05:02 +01:00
|
|
|
Read.SchedClassID = SchedClassID;
|
2018-11-23 21:26:57 +01:00
|
|
|
LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
|
|
|
|
<< ", UseIndex=" << Read.UseIndex << ", RegisterID="
|
2018-07-13 16:55:47 +02:00
|
|
|
<< MRI.getName(Read.RegisterID) << '\n');
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-04 12:36:49 +02:00
|
|
|
Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
|
|
|
|
const MCInst &MCI) const {
|
|
|
|
if (ID.NumMicroOps != 0)
|
|
|
|
return ErrorSuccess();
|
|
|
|
|
|
|
|
bool UsesMemory = ID.MayLoad || ID.MayStore;
|
|
|
|
bool UsesBuffers = !ID.Buffers.empty();
|
|
|
|
bool UsesResources = !ID.Resources.empty();
|
|
|
|
if (!UsesMemory && !UsesBuffers && !UsesResources)
|
|
|
|
return ErrorSuccess();
|
|
|
|
|
2018-10-24 12:56:47 +02:00
|
|
|
StringRef Message;
|
2018-10-04 12:36:49 +02:00
|
|
|
if (UsesMemory) {
|
2018-10-24 12:56:47 +02:00
|
|
|
Message = "found an inconsistent instruction that decodes "
|
|
|
|
"into zero opcodes and that consumes load/store "
|
|
|
|
"unit resources.";
|
2018-10-04 12:36:49 +02:00
|
|
|
} else {
|
2018-10-24 12:56:47 +02:00
|
|
|
Message = "found an inconsistent instruction that decodes "
|
|
|
|
"to zero opcodes and that consumes scheduler "
|
|
|
|
"resources.";
|
2018-10-04 12:36:49 +02:00
|
|
|
}
|
|
|
|
|
2018-10-24 12:56:47 +02:00
|
|
|
return make_error<InstructionError<MCInst>>(Message, MCI);
|
2018-10-04 12:36:49 +02:00
|
|
|
}
|
|
|
|
|
2018-08-13 20:11:48 +02:00
|
|
|
Expected<const InstrDesc &>
|
|
|
|
InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
|
2018-03-08 14:05:02 +01:00
|
|
|
assert(STI.getSchedModel().hasInstrSchedModel() &&
|
|
|
|
"Itineraries are not yet supported!");
|
|
|
|
|
|
|
|
// Obtain the instruction descriptor from the opcode.
|
2018-07-09 14:30:55 +02:00
|
|
|
unsigned short Opcode = MCI.getOpcode();
|
2018-03-08 14:05:02 +01:00
|
|
|
const MCInstrDesc &MCDesc = MCII.get(Opcode);
|
|
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
|
|
|
|
|
|
// Then obtain the scheduling class information from the instruction.
|
2018-05-04 15:10:10 +02:00
|
|
|
unsigned SchedClassID = MCDesc.getSchedClass();
|
2018-06-04 17:43:09 +02:00
|
|
|
unsigned CPUID = SM.getProcessorID();
|
|
|
|
|
|
|
|
// Try to solve variant scheduling classes.
|
|
|
|
if (SchedClassID) {
|
|
|
|
while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
|
|
|
|
SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);
|
|
|
|
|
2018-08-13 20:11:48 +02:00
|
|
|
if (!SchedClassID) {
|
2018-10-24 12:56:47 +02:00
|
|
|
return make_error<InstructionError<MCInst>>(
|
|
|
|
"unable to resolve scheduling class for write variant.", MCI);
|
2018-08-13 20:11:48 +02:00
|
|
|
}
|
2018-06-04 17:43:09 +02:00
|
|
|
}
|
2018-03-08 14:05:02 +01:00
|
|
|
|
2018-08-13 20:11:48 +02:00
|
|
|
// Check if this instruction is supported. Otherwise, report an error.
|
2018-07-09 14:30:55 +02:00
|
|
|
const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
|
|
|
|
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
|
2018-10-24 12:56:47 +02:00
|
|
|
return make_error<InstructionError<MCInst>>(
|
|
|
|
"found an unsupported instruction in the input assembly sequence.",
|
|
|
|
MCI);
|
2018-07-09 14:30:55 +02:00
|
|
|
}
|
|
|
|
|
2018-03-08 14:05:02 +01:00
|
|
|
// Create a new empty descriptor.
|
2018-03-20 13:58:34 +01:00
|
|
|
std::unique_ptr<InstrDesc> ID = llvm::make_unique<InstrDesc>();
|
2018-06-04 17:43:09 +02:00
|
|
|
ID->NumMicroOps = SCDesc.NumMicroOps;
|
2018-03-08 14:05:02 +01:00
|
|
|
|
|
|
|
if (MCDesc.isCall()) {
|
|
|
|
// We don't correctly model calls.
|
2018-05-04 15:52:12 +02:00
|
|
|
WithColor::warning() << "found a call in the input assembly sequence.\n";
|
|
|
|
WithColor::note() << "call instructions are not correctly modeled. "
|
|
|
|
<< "Assume a latency of 100cy.\n";
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if (MCDesc.isReturn()) {
|
2018-05-04 15:52:12 +02:00
|
|
|
WithColor::warning() << "found a return instruction in the input"
|
|
|
|
<< " assembly sequence.\n";
|
|
|
|
WithColor::note() << "program counter updates are ignored.\n";
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
ID->MayLoad = MCDesc.mayLoad();
|
|
|
|
ID->MayStore = MCDesc.mayStore();
|
|
|
|
ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
|
|
|
|
|
|
|
|
initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
|
2018-04-25 11:38:58 +02:00
|
|
|
computeMaxLatency(*ID, MCDesc, SCDesc, STI);
|
2018-11-23 21:26:57 +01:00
|
|
|
|
|
|
|
if (Error Err = verifyOperands(MCDesc, MCI))
|
2018-08-13 20:11:48 +02:00
|
|
|
return std::move(Err);
|
2018-03-08 14:05:02 +01:00
|
|
|
|
2018-11-23 21:26:57 +01:00
|
|
|
populateWrites(*ID, MCI, SchedClassID);
|
|
|
|
populateReads(*ID, MCI, SchedClassID);
|
|
|
|
|
2018-05-14 14:53:11 +02:00
|
|
|
LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
|
2018-03-08 14:05:02 +01:00
|
|
|
|
2018-10-04 12:36:49 +02:00
|
|
|
// Sanity check on the instruction descriptor.
|
|
|
|
if (Error Err = verifyInstrDesc(*ID, MCI))
|
|
|
|
return std::move(Err);
|
|
|
|
|
2018-03-08 14:05:02 +01:00
|
|
|
// Now add the new descriptor.
|
2018-06-04 17:43:09 +02:00
|
|
|
SchedClassID = MCDesc.getSchedClass();
|
|
|
|
if (!SM.getSchedClassDesc(SchedClassID)->isVariant()) {
|
|
|
|
Descriptors[MCI.getOpcode()] = std::move(ID);
|
|
|
|
return *Descriptors[MCI.getOpcode()];
|
|
|
|
}
|
|
|
|
|
|
|
|
VariantDescriptors[&MCI] = std::move(ID);
|
|
|
|
return *VariantDescriptors[&MCI];
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
2018-08-13 20:11:48 +02:00
|
|
|
Expected<const InstrDesc &>
|
|
|
|
InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
|
2018-06-04 17:43:09 +02:00
|
|
|
if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
|
|
|
|
return *Descriptors[MCI.getOpcode()];
|
|
|
|
|
|
|
|
if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
|
|
|
|
return *VariantDescriptors[&MCI];
|
|
|
|
|
|
|
|
return createInstrDescImpl(MCI);
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
2018-08-13 20:11:48 +02:00
|
|
|
Expected<std::unique_ptr<Instruction>>
|
2018-05-04 15:10:10 +02:00
|
|
|
InstrBuilder::createInstruction(const MCInst &MCI) {
|
2018-08-13 20:11:48 +02:00
|
|
|
Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
|
|
|
|
if (!DescOrErr)
|
|
|
|
return DescOrErr.takeError();
|
|
|
|
const InstrDesc &D = *DescOrErr;
|
2018-03-20 13:58:34 +01:00
|
|
|
std::unique_ptr<Instruction> NewIS = llvm::make_unique<Instruction>(D);
|
2018-03-08 14:05:02 +01:00
|
|
|
|
2018-09-18 17:00:06 +02:00
|
|
|
// Check if this is a dependency breaking instruction.
|
[TableGen][SubtargetEmitter] Add the ability for processor models to describe dependency breaking instructions.
This patch adds the ability for processor models to describe dependency breaking
instructions.
Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.
The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).
```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
return false;
}
virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
return isZeroIdiom(MI);
}
```
An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.
A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.
STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.
This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.
This patch supersedes the one committed at r338372 (phabricator review: D49310).
The main advantages are:
- We can describe subtarget predicates via tablegen using STIPredicates.
- We can describe zero-idioms / dep-breaking instructions directly via
tablegen in the scheduling models.
In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
- Teach how to identify optimizable register-register moves
- Teach how to identify slow LEA instructions (each subtarget defining its own
concept of "slow" LEA).
- Teach how to identify instructions that have undocumented false dependencies
on the output registers on some processors only.
It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.
This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.
Differential Revision: https://reviews.llvm.org/D52174
llvm-svn: 342555
2018-09-19 17:57:45 +02:00
|
|
|
APInt Mask;
|
|
|
|
|
|
|
|
unsigned ProcID = STI.getSchedModel().getProcessorID();
|
|
|
|
bool IsZeroIdiom = MCIA.isZeroIdiom(MCI, Mask, ProcID);
|
|
|
|
bool IsDepBreaking =
|
|
|
|
IsZeroIdiom || MCIA.isDependencyBreaking(MCI, Mask, ProcID);
|
[tblgen][llvm-mca] Add the ability to describe move elimination candidates via tablegen.
This patch adds the ability to identify instructions that are "move elimination
candidates". It also allows scheduling models to describe processor register
files that allow move elimination.
A move elimination candidate is an instruction that can be eliminated at
register renaming stage.
Each subtarget can specify which instructions are move elimination candidates
with the help of tablegen class "IsOptimizableRegisterMove" (see
llvm/Target/TargetInstrPredicate.td).
For example, on X86, BtVer2 allows both GPR and MMX/SSE moves to be eliminated.
The definition of 'IsOptimizableRegisterMove' for BtVer2 looks like this:
```
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV64rr,
// MMX variants.
MMX_MOVQ64rr,
// SSE variants.
MOVAPSrr, MOVUPSrr,
MOVAPDrr, MOVUPDrr,
MOVDQArr, MOVDQUrr,
// AVX variants.
VMOVAPSrr, VMOVUPSrr,
VMOVAPDrr, VMOVUPDrr,
VMOVDQArr, VMOVDQUrr
], CheckNot<CheckSameRegOperand<0, 1>> >
]>;
```
Definitions of IsOptimizableRegisterMove from processor models of a same
Target are processed by the SubtargetEmitter to auto-generate a target-specific
override for each of the following predicate methods:
```
bool TargetSubtargetInfo::isOptimizableRegisterMove(const MachineInstr *MI)
const;
bool MCInstrAnalysis::isOptimizableRegisterMove(const MCInst &MI, unsigned
CPUID) const;
```
By default, those methods return false (i.e. conservatively assume that there
are no move elimination candidates).
Tablegen class RegisterFile has been extended with the following information:
- The set of register classes that allow move elimination.
- Maxium number of moves that can be eliminated every cycle.
- Whether move elimination is restricted to moves from registers that are
known to be zero.
This patch is structured in three part:
A first part (which is mostly boilerplate) adds the new
'isOptimizableRegisterMove' target hooks, and extends existing register file
descriptors in MC by introducing new fields to describe properties related to
move elimination.
A second part, uses the new tablegen constructs to describe move elimination in
the BtVer2 scheduling model.
A third part, teaches llm-mca how to query the new 'isOptimizableRegisterMove'
hook to mark instructions that are candidates for move elimination. It also
teaches class RegisterFile how to describe constraints on move elimination at
PRF granularity.
llvm-mca tests for btver2 show differences before/after this patch.
Differential Revision: https://reviews.llvm.org/D53134
llvm-svn: 344334
2018-10-12 13:23:04 +02:00
|
|
|
if (MCIA.isOptimizableRegisterMove(MCI, ProcID))
|
|
|
|
NewIS->setOptimizableMove();
|
2018-09-18 17:00:06 +02:00
|
|
|
|
2018-04-25 11:38:58 +02:00
|
|
|
// Initialize Reads first.
|
2018-03-08 14:05:02 +01:00
|
|
|
for (const ReadDescriptor &RD : D.Reads) {
|
|
|
|
int RegID = -1;
|
2018-06-22 18:37:05 +02:00
|
|
|
if (!RD.isImplicitRead()) {
|
2018-03-08 14:05:02 +01:00
|
|
|
// explicit read.
|
|
|
|
const MCOperand &Op = MCI.getOperand(RD.OpIndex);
|
|
|
|
// Skip non-register operands.
|
|
|
|
if (!Op.isReg())
|
|
|
|
continue;
|
|
|
|
RegID = Op.getReg();
|
|
|
|
} else {
|
|
|
|
// Implicit read.
|
|
|
|
RegID = RD.RegisterID;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Skip invalid register operands.
|
|
|
|
if (!RegID)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Okay, this is a register operand. Create a ReadState for it.
|
|
|
|
assert(RegID > 0 && "Invalid register ID found!");
|
2018-10-25 19:03:51 +02:00
|
|
|
NewIS->getUses().emplace_back(RD, RegID);
|
|
|
|
ReadState &RS = NewIS->getUses().back();
|
2018-09-18 17:00:06 +02:00
|
|
|
|
[TableGen][SubtargetEmitter] Add the ability for processor models to describe dependency breaking instructions.
This patch adds the ability for processor models to describe dependency breaking
instructions.
Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.
The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).
```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
return false;
}
virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
return isZeroIdiom(MI);
}
```
An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.
A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.
STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.
This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.
This patch supersedes the one committed at r338372 (phabricator review: D49310).
The main advantages are:
- We can describe subtarget predicates via tablegen using STIPredicates.
- We can describe zero-idioms / dep-breaking instructions directly via
tablegen in the scheduling models.
In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
- Teach how to identify optimizable register-register moves
- Teach how to identify slow LEA instructions (each subtarget defining its own
concept of "slow" LEA).
- Teach how to identify instructions that have undocumented false dependencies
on the output registers on some processors only.
It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.
This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.
Differential Revision: https://reviews.llvm.org/D52174
llvm-svn: 342555
2018-09-19 17:57:45 +02:00
|
|
|
if (IsDepBreaking) {
|
|
|
|
// A mask of all zeroes means: explicit input operands are not
|
|
|
|
// independent.
|
|
|
|
if (Mask.isNullValue()) {
|
|
|
|
if (!RD.isImplicitRead())
|
2018-10-25 19:03:51 +02:00
|
|
|
RS.setIndependentFromDef();
|
[TableGen][SubtargetEmitter] Add the ability for processor models to describe dependency breaking instructions.
This patch adds the ability for processor models to describe dependency breaking
instructions.
Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.
The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).
```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
return false;
}
virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
return isZeroIdiom(MI);
}
```
An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.
A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.
STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.
This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.
This patch supersedes the one committed at r338372 (phabricator review: D49310).
The main advantages are:
- We can describe subtarget predicates via tablegen using STIPredicates.
- We can describe zero-idioms / dep-breaking instructions directly via
tablegen in the scheduling models.
In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
- Teach how to identify optimizable register-register moves
- Teach how to identify slow LEA instructions (each subtarget defining its own
concept of "slow" LEA).
- Teach how to identify instructions that have undocumented false dependencies
on the output registers on some processors only.
It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.
This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.
Differential Revision: https://reviews.llvm.org/D52174
llvm-svn: 342555
2018-09-19 17:57:45 +02:00
|
|
|
} else {
|
|
|
|
// Check if this register operand is independent according to `Mask`.
|
|
|
|
// Note that Mask may not have enough bits to describe all explicit and
|
|
|
|
// implicit input operands. If this register operand doesn't have a
|
|
|
|
// corresponding bit in Mask, then conservatively assume that it is
|
|
|
|
// dependent.
|
|
|
|
if (Mask.getBitWidth() > RD.UseIndex) {
|
|
|
|
// Okay. This map describe register use `RD.UseIndex`.
|
|
|
|
if (Mask[RD.UseIndex])
|
2018-10-25 19:03:51 +02:00
|
|
|
RS.setIndependentFromDef();
|
[TableGen][SubtargetEmitter] Add the ability for processor models to describe dependency breaking instructions.
This patch adds the ability for processor models to describe dependency breaking
instructions.
Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.
The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).
```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
return false;
}
virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
return isZeroIdiom(MI);
}
```
An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.
A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.
STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.
This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.
This patch supersedes the one committed at r338372 (phabricator review: D49310).
The main advantages are:
- We can describe subtarget predicates via tablegen using STIPredicates.
- We can describe zero-idioms / dep-breaking instructions directly via
tablegen in the scheduling models.
In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
- Teach how to identify optimizable register-register moves
- Teach how to identify slow LEA instructions (each subtarget defining its own
concept of "slow" LEA).
- Teach how to identify instructions that have undocumented false dependencies
on the output registers on some processors only.
It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.
This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.
Differential Revision: https://reviews.llvm.org/D52174
llvm-svn: 342555
2018-09-19 17:57:45 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-03-20 13:25:54 +01:00
|
|
|
}
|
2018-03-08 14:05:02 +01:00
|
|
|
|
2018-06-20 12:08:11 +02:00
|
|
|
// Early exit if there are no writes.
|
|
|
|
if (D.Writes.empty())
|
2018-08-13 20:11:48 +02:00
|
|
|
return std::move(NewIS);
|
2018-06-20 12:08:11 +02:00
|
|
|
|
|
|
|
// Track register writes that implicitly clear the upper portion of the
|
|
|
|
// underlying super-registers using an APInt.
|
|
|
|
APInt WriteMask(D.Writes.size(), 0);
|
|
|
|
|
|
|
|
// Now query the MCInstrAnalysis object to obtain information about which
|
|
|
|
// register writes implicitly clear the upper portion of a super-register.
|
|
|
|
MCIA.clearsSuperRegisters(MRI, MCI, WriteMask);
|
|
|
|
|
2018-04-25 11:38:58 +02:00
|
|
|
// Initialize writes.
|
2018-06-20 12:08:11 +02:00
|
|
|
unsigned WriteIndex = 0;
|
2018-03-08 14:05:02 +01:00
|
|
|
for (const WriteDescriptor &WD : D.Writes) {
|
2018-07-09 14:30:55 +02:00
|
|
|
unsigned RegID = WD.isImplicitWrite() ? WD.RegisterID
|
|
|
|
: MCI.getOperand(WD.OpIndex).getReg();
|
2018-03-22 11:19:20 +01:00
|
|
|
// Check if this is a optional definition that references NoReg.
|
2018-06-20 12:08:11 +02:00
|
|
|
if (WD.IsOptionalDef && !RegID) {
|
|
|
|
++WriteIndex;
|
2018-03-08 14:05:02 +01:00
|
|
|
continue;
|
2018-06-20 12:08:11 +02:00
|
|
|
}
|
2018-03-08 14:05:02 +01:00
|
|
|
|
2018-03-22 11:19:20 +01:00
|
|
|
assert(RegID && "Expected a valid register ID!");
|
2018-11-23 21:26:57 +01:00
|
|
|
NewIS->getDefs().emplace_back(WD, RegID,
|
|
|
|
/* ClearsSuperRegs */ WriteMask[WriteIndex],
|
|
|
|
/* WritesZero */ IsZeroIdiom);
|
2018-06-20 12:08:11 +02:00
|
|
|
++WriteIndex;
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
|
2018-08-13 20:11:48 +02:00
|
|
|
return std::move(NewIS);
|
2018-03-08 14:05:02 +01:00
|
|
|
}
|
|
|
|
} // namespace mca
|
2018-10-30 16:56:08 +01:00
|
|
|
} // namespace llvm
|