1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp

1389 lines
50 KiB
C++
Raw Normal View History

//===- InstCombineMulDivRem.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
// srem, urem, frem.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
/// The specific integer value is used in a context where it is known to be
/// non-zero. If this allows us to simplify the computation, do so and return
/// the new operand, otherwise return null.
Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.) This change, which allows @llvm.assume to be used from within computeKnownBits (and other associated functions in ValueTracking), adds some (optional) parameters to computeKnownBits and friends. These functions now (optionally) take a "context" instruction pointer, an AssumptionTracker pointer, and also a DomTree pointer, and most of the changes are just to pass this new information when it is easily available from InstSimplify, InstCombine, etc. As explained below, the significant conceptual change is that known properties of a value might depend on the control-flow location of the use (because we care that the @llvm.assume dominates the use because assumptions have control-flow dependencies). This means that, when we ask if bits are known in a value, we might get different answers for different uses. The significant changes are all in ValueTracking. Two main changes: First, as with the rest of the code, new parameters need to be passed around. To make this easier, I grouped them into a structure, and I made internal static versions of the relevant functions that take this structure as a parameter. The new code does as you might expect, it looks for @llvm.assume calls that make use of the value we're trying to learn something about (often indirectly), attempts to pattern match that expression, and uses the result if successful. By making use of the AssumptionTracker, the process of finding @llvm.assume calls is not expensive. Part of the structure being passed around inside ValueTracking is a set of already-considered @llvm.assume calls. This is to prevent a query using, for example, the assume(a == b), to recurse on itself. The context and DT params are used to find applicable assumptions. An assumption needs to dominate the context instruction, or come after it deterministically. In this latter case we only handle the specific case where both the assumption and the context instruction are in the same block, and we need to exclude assumptions from being used to simplify their own ephemeral values (those which contribute only to the assumption) because otherwise the assumption would prove its feeding comparison trivial and would be removed. This commit adds the plumbing and the logic for a simple masked-bit propagation (just enough to write a regression test). Future commits add more patterns (and, correspondingly, more regression tests). llvm-svn: 217342
2014-09-07 20:57:58 +02:00
static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
if (!V->hasOneUse()) return nullptr;
bool MadeChange = false;
// ((1 << A) >>u B) --> (1 << (A-B))
// Because V cannot be zero, we know that B is less than A.
Value *A = nullptr, *B = nullptr, *One = nullptr;
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
match(One, m_One())) {
A = IC.Builder.CreateSub(A, B);
return IC.Builder.CreateShl(One, A);
}
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
2016-05-22 19:08:52 +02:00
BinaryOperator *I = dyn_cast<BinaryOperator>(V);
if (I && I->isLogicalShift() &&
IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
2016-05-22 19:08:52 +02:00
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
I->setOperand(0, V2);
MadeChange = true;
}
2016-05-22 19:08:52 +02:00
if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
I->setIsExact();
MadeChange = true;
}
2016-05-22 19:08:52 +02:00
if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
I->setHasNoUnsignedWrap();
MadeChange = true;
}
2016-05-22 19:08:52 +02:00
}
// TODO: Lots more we could do here:
// If V is a phi node, we can call this on each of its operands.
// "select cond, X, 0" can simplify to "X".
return MadeChange ? V : nullptr;
}
/// A helper routine of InstCombiner::visitMul().
///
/// If C is a scalar/vector of known powers of 2, then this function returns
/// a new scalar/vector obtained from logBase2 of C.
/// Return a null pointer otherwise.
static Constant *getLogBase2(Type *Ty, Constant *C) {
const APInt *IVal;
if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
return ConstantInt::get(Ty, IVal->logBase2());
if (!Ty->isVectorTy())
return nullptr;
SmallVector<Constant *, 4> Elts;
for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
Constant *Elt = C->getAggregateElement(I);
if (!Elt)
return nullptr;
if (isa<UndefValue>(Elt)) {
Elts.push_back(UndefValue::get(Ty->getScalarType()));
continue;
}
if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
return nullptr;
Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
}
return ConstantVector::get(Elts);
}
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Value *V = SimplifyUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
// X * -1 == 0 - X
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (match(Op1, m_AllOnes())) {
BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
if (I.hasNoSignedWrap())
BO->setHasNoSignedWrap();
return BO;
}
// Also allow combining multiply instructions on vectors.
{
Value *NewOp;
Constant *C1, *C2;
const APInt *IVal;
if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
m_Constant(C1))) &&
match(C1, m_APInt(IVal))) {
// ((X << C2)*C1) == (X * (C1 << C2))
Constant *Shl = ConstantExpr::getShl(C1, C2);
BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
Shl->isNotMinSignedValue())
BO->setHasNoSignedWrap();
return BO;
}
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
// Replace X*(2^C) with X << C, where C is either a scalar or a vector.
if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
if (I.hasNoUnsignedWrap())
Shl->setHasNoUnsignedWrap();
if (I.hasNoSignedWrap()) {
const APInt *V;
if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
Shl->setHasNoSignedWrap();
}
return Shl;
}
}
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
// (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
// (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
// The "* (2**n)" thus becomes a potential shifting opportunity.
{
const APInt & Val = CI->getValue();
const APInt &PosVal = Val.abs();
if (Val.isNegative() && PosVal.isPowerOf2()) {
Value *X = nullptr, *Y = nullptr;
if (Op0->hasOneUse()) {
ConstantInt *C1;
Value *Sub = nullptr;
if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
Sub = Builder.CreateSub(X, Y, "suba");
else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
if (Sub)
return
BinaryOperator::CreateMul(Sub,
ConstantInt::get(Y->getType(), PosVal));
}
}
}
}
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
// Simplify mul instructions with a constant RHS.
if (isa<Constant>(Op1)) {
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
Value *X;
Constant *C1;
if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
Value *Mul = Builder.CreateMul(C1, Op1);
// Only go forward with the transform if C1*CI simplifies to a tidier
// constant.
if (!match(Mul, m_Mul(m_Value(), m_Value())))
return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
}
}
// -X * C --> X * -C
Value *X, *Y;
Constant *Op1C;
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
// -X * -Y --> X * Y
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
auto *NewMul = BinaryOperator::CreateMul(X, Y);
if (I.hasNoSignedWrap() &&
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
NewMul->setHasNoSignedWrap();
return NewMul;
}
// -X * Y --> -(X * Y)
// X * -Y --> -(X * Y)
if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
Value *Y = Op1;
BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
if (!Div || (Div->getOpcode() != Instruction::UDiv &&
Div->getOpcode() != Instruction::SDiv)) {
Y = Op0;
Div = dyn_cast<BinaryOperator>(Op1);
}
Value *Neg = dyn_castNegVal(Y);
if (Div && Div->hasOneUse() &&
(Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
(Div->getOpcode() == Instruction::UDiv ||
Div->getOpcode() == Instruction::SDiv)) {
Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
// If the division is exact, X % Y is zero, so we end up with X or -X.
if (Div->isExact()) {
if (DivOp1 == Y)
return replaceInstUsesWith(I, X);
return BinaryOperator::CreateNeg(X);
}
auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
: Instruction::SRem;
Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
if (DivOp1 == Y)
return BinaryOperator::CreateSub(X, Rem);
return BinaryOperator::CreateSub(Rem, X);
}
}
/// i1 mul -> i1 and.
if (I.getType()->isIntOrIntVectorTy(1))
return BinaryOperator::CreateAnd(Op0, Op1);
// X*(1 << Y) --> X << Y
// (1 << Y)*X --> X << Y
{
Value *Y;
BinaryOperator *BO = nullptr;
bool ShlNSW = false;
if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
BO = BinaryOperator::CreateShl(Op1, Y);
ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
} else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
BO = BinaryOperator::CreateShl(Op0, Y);
ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
}
if (BO) {
if (I.hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (I.hasNoSignedWrap() && ShlNSW)
BO->setHasNoSignedWrap();
return BO;
}
}
// (bool X) * Y --> X ? Y : 0
// Y * (bool X) --> X ? Y : 0
if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
// (lshr X, 31) * Y --> (ashr X, 31) & Y
// Y * (lshr X, 31) --> (ashr X, 31) & Y
// TODO: We are not checking one-use because the elimination of the multiply
// is better for analysis?
// TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
// more similar to what we're doing above.
const APInt *C;
if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
if (Instruction *Ext = narrowMathIfNoOverflow(I))
return Ext;
bool Changed = false;
if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
}
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
// X * -1.0 --> -X
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (match(Op1, m_SpecificFP(-1.0)))
return BinaryOperator::CreateFNegFMF(Op0, &I);
// -X * -Y --> X * Y
Value *X, *Y;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
return BinaryOperator::CreateFMulFMF(X, Y, &I);
// -X * C --> X * -C
Constant *C;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
// Sink negation: -X * Y --> -(X * Y)
if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
// Sink negation: Y * -X --> -(X * Y)
if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
// fabs(X) * fabs(X) -> X * X
if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
return BinaryOperator::CreateFMulFMF(X, X, &I);
// (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
if (I.hasAllowReassoc()) {
// Reassociate constant RHS with another constant to form constant
// expression.
if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
Constant *C1;
if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
// (C1 / X) * C --> (C * C1) / X
Constant *CC1 = ConstantExpr::getFMul(C, C1);
if (CC1->isNormalFP())
return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X / C1) * C --> X * (C / C1)
Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
if (CDivC1->isNormalFP())
return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
// If the constant was a denormal, try reassociating differently.
// (X / C1) * C --> X / (C1 / C)
Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
if (Op0->hasOneUse() && C1DivC->isNormalFP())
return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}
// We do not need to match 'fadd C, X' and 'fsub X, C' because they are
// canonicalized to 'fadd X, C'. Distributing the multiply may allow
// further folds and (X * C) + C2 is 'fma'.
if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
// (X + C1) * C --> (X * C) + (C * C1)
Constant *CC1 = ConstantExpr::getFMul(C, C1);
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
// (C1 - X) * C --> (C * C1) - (X * C)
Constant *CC1 = ConstantExpr::getFMul(C, C1);
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
// sqrt(X) * sqrt(Y) -> sqrt(X * Y)
// nnan disallows the possibility of returning a number if both operands are
// negative (in that case, we should return NaN).
if (I.hasNoNaNs() &&
match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
return replaceInstUsesWith(I, Sqrt);
}
// exp(X) * exp(Y) -> exp(X + Y)
// Match as long as at least one of exp has only one use.
if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
return replaceInstUsesWith(I, Exp);
}
// exp2(X) * exp2(Y) -> exp2(X + Y)
// Match as long as at least one of exp2 has only one use.
if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
return replaceInstUsesWith(I, Exp2);
}
// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
// 1) to form a power expression (of X).
// 2) potentially shorten the critical path: After transformation, the
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
Op1 != Y) {
Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
Op0 != Y) {
Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
}
// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
IntrinsicInst *Log2 = nullptr;
if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op0);
Y = Op1;
}
if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op1);
Y = Op0;
}
if (Log2) {
Log2->setArgOperand(0, X);
Log2->copyFastMathFlags(&I);
Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
}
}
return nullptr;
}
/// Fold a divide or remainder with a select instruction divisor when one of the
/// select operands is zero. In that case, we can use the other select operand
/// because div/rem by zero is undefined.
bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
if (!SI)
return false;
int NonNullOperand;
if (match(SI->getTrueValue(), m_Zero()))
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
NonNullOperand = 2;
else if (match(SI->getFalseValue(), m_Zero()))
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
NonNullOperand = 1;
else
return false;
// Change the div/rem to use 'Y' instead of the select.
I.setOperand(1, SI->getOperand(NonNullOperand));
// Okay, we know we replace the operand of the div/rem with 'Y' with no
// problem. However, the select, or the condition of the select may have
// multiple uses. Based on our knowledge that the operand must be non-zero,
// propagate the known value for the select into other uses of it, and
// propagate a known value of the condition into its other users.
// If the select and condition only have a single use, don't bother with this,
// early exit.
Value *SelectCond = SI->getCondition();
if (SI->use_empty() && SelectCond->hasOneUse())
return true;
// Scan the current block backward, looking for other uses of SI.
BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
Type *CondTy = SelectCond->getType();
while (BBI != BBFront) {
--BBI;
// If we found an instruction that we can't assume will return, so
// information from below it cannot be propagated above it.
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
break;
// Replace uses of the select or its condition with the known values.
for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
I != E; ++I) {
if (*I == SI) {
*I = SI->getOperand(NonNullOperand);
Worklist.Add(&*BBI);
} else if (*I == SelectCond) {
*I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
: ConstantInt::getFalse(CondTy);
Worklist.Add(&*BBI);
}
}
// If we past the instruction, quit looking for it.
if (&*BBI == SI)
SI = nullptr;
if (&*BBI == SelectCond)
SelectCond = nullptr;
// If we ran out of things to eliminate, break out of the loop.
if (!SelectCond && !SI)
break;
}
return true;
}
/// True if the multiply can not be expressed in an int this size.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
bool IsSigned) {
bool Overflow;
Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
return Overflow;
}
/// True if C1 is a multiple of C2. Quotient contains C1/C2.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
bool IsSigned) {
assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
// Bail if we will divide by zero.
if (C2.isNullValue())
return false;
// Bail if we would divide INT_MIN by -1.
if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
return false;
APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
if (IsSigned)
APInt::sdivrem(C1, C2, Quotient, Remainder);
else
APInt::udivrem(C1, C2, Quotient, Remainder);
return Remainder.isMinValue();
}
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
/// Common integer divide transforms
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
bool IsSigned = I.getOpcode() == Instruction::SDiv;
Type *Ty = I.getType();
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
I.setOperand(1, V);
return &I;
}
// Handle cases involving: [su]div X, (select Cond, Y, Z)
// This does not apply for fdiv.
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
const APInt *C2;
if (match(Op1, m_APInt(C2))) {
Value *X;
const APInt *C1;
// (X / C1) / C2 -> X / (C1*C2)
if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Product));
}
if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
// (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
NewDiv->setIsExact(I.isExact());
return NewDiv;
}
// (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
*C1 != C1->getBitWidth() - 1) ||
(!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
APInt C1Shifted = APInt::getOneBitSet(
C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
// (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
auto *BO = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
BO->setIsExact(I.isExact());
return BO;
}
// (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if (!C2->isNullValue()) // avoid X udiv 0
if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
return FoldedDiv;
}
if (match(Op0, m_One())) {
assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
if (IsSigned) {
// If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
// result is one, if Op1 is -1 then the result is minus one, otherwise
// it's zero.
Value *Inc = Builder.CreateAdd(Op1, Op0);
Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
} else {
// If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
// result is one, otherwise it's zero.
return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
}
}
// See if we can fold away this div instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
Value *X, *Z;
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
(!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
return BinaryOperator::Create(I.getOpcode(), X, Op1);
// (X << Y) / X -> 1 << Y
Value *Y;
if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
// X / (X * Y) -> 1 / Y if the multiplication does not overflow.
if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
I.setOperand(0, ConstantInt::get(Ty, 1));
I.setOperand(1, Y);
return &I;
}
}
return nullptr;
}
static const unsigned MaxDepth = 6;
namespace {
using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
const BinaryOperator &I,
InstCombiner &IC);
/// Used to maintain state for visitUDivOperand().
struct UDivFoldAction {
/// Informs visitUDiv() how to fold this operand. This can be zero if this
/// action joins two actions together.
FoldUDivOperandCb FoldAction;
/// Which operand to fold.
Value *OperandToFold;
union {
/// The instruction returned when FoldAction is invoked.
Instruction *FoldResult;
/// Stores the LHS action index if this action joins two actions together.
size_t SelectLHSIdx;
};
UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
: FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
: FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
};
} // end anonymous namespace
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms) I'm reverting this commit because: 1. As discussed during review, it needs to be rewritten (to avoid creating and then deleting instructions). 2. This is causing optimizer crashes. Specifically, I'm seeing things like this: While deleting: i1 % Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1 opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed. I'd guess that these will go away once we're no longer creating/deleting instructions here, but just in case, I'm adding a regression test. Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message: InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms Real world code sometimes has the denominator of a 'udiv' be a 'select'. LLVM can handle such cases but only when the 'select' operands are symmetric in structure (both select operands are a constant power of two or a left shift, etc.). This falls apart if we are dealt a 'udiv' where the code is not symetric or if the select operands lead us to more select instructions. Instead, we should treat the LHS and each select operand as a distinct divide operation and try to optimize them independently. If we can to simplify each operation, then we can replace the 'udiv' with, say, a 'lshr' that has a new select with a bunch of new operands for the select. llvm-svn: 185415
2013-07-02 07:21:11 +02:00
// X udiv 2^C -> X >> C
static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
const BinaryOperator &I, InstCombiner &IC) {
Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
if (!C1)
llvm_unreachable("Failed to constant fold udiv -> logbase2");
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
if (I.isExact())
LShr->setIsExact();
return LShr;
}
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms) I'm reverting this commit because: 1. As discussed during review, it needs to be rewritten (to avoid creating and then deleting instructions). 2. This is causing optimizer crashes. Specifically, I'm seeing things like this: While deleting: i1 % Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1 opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed. I'd guess that these will go away once we're no longer creating/deleting instructions here, but just in case, I'm adding a regression test. Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message: InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms Real world code sometimes has the denominator of a 'udiv' be a 'select'. LLVM can handle such cases but only when the 'select' operands are symmetric in structure (both select operands are a constant power of two or a left shift, etc.). This falls apart if we are dealt a 'udiv' where the code is not symetric or if the select operands lead us to more select instructions. Instead, we should treat the LHS and each select operand as a distinct divide operation and try to optimize them independently. If we can to simplify each operation, then we can replace the 'udiv' with, say, a 'lshr' that has a new select with a bunch of new operands for the select. llvm-svn: 185415
2013-07-02 07:21:11 +02:00
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
InstCombiner &IC) {
Value *ShiftLeft;
if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
ShiftLeft = Op1;
Constant *CI;
Value *N;
if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
llvm_unreachable("match should never fail here!");
Constant *Log2Base = getLogBase2(N->getType(), CI);
if (!Log2Base)
llvm_unreachable("getLogBase2 should never fail here!");
N = IC.Builder.CreateAdd(N, Log2Base);
if (Op1 != ShiftLeft)
N = IC.Builder.CreateZExt(N, Op1->getType());
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
if (I.isExact())
LShr->setIsExact();
return LShr;
}
// Recursively visits the possible right hand operands of a udiv
// instruction, seeing through select instructions, to determine if we can
// replace the udiv with something simpler. If we find that an operand is not
// able to simplify the udiv, we abort the entire transformation.
static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
SmallVectorImpl<UDivFoldAction> &Actions,
unsigned Depth = 0) {
// Check to see if this is an unsigned division with an exact power of 2,
// if so, convert to a right shift.
if (match(Op1, m_Power2())) {
Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
return Actions.size();
}
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
return Actions.size();
}
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxDepth)
return 0;
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (size_t LHSIdx =
visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
return Actions.size();
}
return 0;
}
/// If we have zero-extended operands of an unsigned div or rem, we may be able
/// to narrow the operation (sink the zext below the math).
static Instruction *narrowUDivURem(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Instruction::BinaryOps Opcode = I.getOpcode();
Value *N = I.getOperand(0);
Value *D = I.getOperand(1);
Type *Ty = I.getType();
Value *X, *Y;
if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
// udiv (zext X), (zext Y) --> zext (udiv X, Y)
// urem (zext X), (zext Y) --> zext (urem X, Y)
Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
return new ZExtInst(NarrowOp, Ty);
}
Constant *C;
if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
(match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
// If the constant is the same in the smaller type, use the narrow version.
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(TruncC, Ty) != C)
return nullptr;
// udiv (zext X), C --> zext (udiv X, C')
// urem (zext X), C --> zext (urem X, C')
// udiv C, (zext X) --> zext (udiv C', X)
// urem C, (zext X) --> zext (urem C', X)
Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
: Builder.CreateBinOp(Opcode, TruncC, X);
return new ZExtInst(NarrowOp, Ty);
}
return nullptr;
}
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X;
const APInt *C1, *C2;
if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
// (X lshr C1) udiv C2 --> X udiv (C2 << C1)
bool Overflow;
APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
if (!Overflow) {
bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
BinaryOperator *BO = BinaryOperator::CreateUDiv(
X, ConstantInt::get(X->getType(), C2ShlC1));
if (IsExact)
BO->setIsExact();
return BO;
}
Revert r185257 (InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms) I'm reverting this commit because: 1. As discussed during review, it needs to be rewritten (to avoid creating and then deleting instructions). 2. This is causing optimizer crashes. Specifically, I'm seeing things like this: While deleting: i1 % Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1 opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed. I'd guess that these will go away once we're no longer creating/deleting instructions here, but just in case, I'm adding a regression test. Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message: InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms Real world code sometimes has the denominator of a 'udiv' be a 'select'. LLVM can handle such cases but only when the 'select' operands are symmetric in structure (both select operands are a constant power of two or a left shift, etc.). This falls apart if we are dealt a 'udiv' where the code is not symetric or if the select operands lead us to more select instructions. Instead, we should treat the LHS and each select operand as a distinct divide operation and try to optimize them independently. If we can to simplify each operation, then we can replace the 'udiv' with, say, a 'lshr' that has a new select with a bunch of new operands for the select. llvm-svn: 185415
2013-07-02 07:21:11 +02:00
}
// Op0 / C where C is large (negative) --> zext (Op0 >= C)
// TODO: Could use isKnownNegative() to handle non-constant values.
Type *Ty = I.getType();
if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
return NarrowDiv;
// If the udiv operands are non-overflowing multiplies with a common operand,
// then eliminate the common factor:
// (A * B) / (A * X) --> B / X (and commuted variants)
// TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
// TODO: If -reassociation handled this generally, we could remove this.
Value *A, *B;
if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
return BinaryOperator::CreateUDiv(B, X);
if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
return BinaryOperator::CreateUDiv(A, X);
}
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
SmallVector<UDivFoldAction, 6> UDivActions;
if (visitUDivOperand(Op0, Op1, I, UDivActions))
for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
FoldUDivOperandCb Action = UDivActions[i].FoldAction;
Value *ActionOp1 = UDivActions[i].OperandToFold;
Instruction *Inst;
if (Action)
Inst = Action(Op0, ActionOp1, I, *this);
else {
// This action joins two actions together. The RHS of this action is
// simply the last action we processed, we saved the LHS action index in
// the joining action.
size_t SelectRHSIdx = i - 1;
Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
SelectLHS, SelectRHS);
}
// If this is the last action to process, return it to the InstCombiner.
// Otherwise, we insert it before the UDiv and record it so that we may
// use it as part of a joining action (i.e., a SelectInst).
if (e - i != 1) {
Inst->insertBefore(&I);
UDivActions[i].FoldResult = Inst;
} else
return Inst;
}
return nullptr;
}
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X;
// sdiv Op0, -1 --> -Op0
// sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
if (match(Op1, m_AllOnes()) ||
(match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
return BinaryOperator::CreateNeg(Op0);
const APInt *Op1C;
if (match(Op1, m_APInt(Op1C))) {
// sdiv exact X, C --> ashr exact X, log2(C)
if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
}
// If the dividend is sign-extended and the constant divisor is small enough
// to fit in the source type, shrink the division to the narrower type:
// (sext X) sdiv C --> sext (X sdiv C)
Value *Op0Src;
if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
// In the general case, we need to make sure that the dividend is not the
// minimum signed value because dividing that by -1 is UB. But here, we
// know that the -1 divisor case is already handled above.
Constant *NarrowDivisor =
ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
return new SExtInst(NarrowOp, Op0->getType());
}
}
if (Constant *RHS = dyn_cast<Constant>(Op1)) {
// X/INT_MIN -> X == INT_MIN
if (RHS->isMinSignedValue())
return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
// -X/C --> X/-C provided the negation doesn't overflow.
Value *X;
if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
BO->setIsExact(I.isExact());
return BO;
}
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a udiv.
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
// X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
// the sign bit set.
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
}
return nullptr;
}
/// Remove negation and try to convert division into multiplication.
static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(1), m_Constant(C)))
return nullptr;
// -X / C --> X / -C
Value *X;
if (match(I.getOperand(0), m_FNeg(m_Value(X))))
return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
// If the constant divisor has an exact inverse, this is always safe. If not,
// then we can still create a reciprocal if fast-math-flags allow it and the
// constant is a regular number (not zero, infinite, or denormal).
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
return nullptr;
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
if (!RecipC->isNormalFP())
return nullptr;
// X / C --> X * (1 / C)
return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
}
/// Remove negation and try to reassociate constant math.
static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(0), m_Constant(C)))
return nullptr;
// C / -X --> -C / X
Value *X;
if (match(I.getOperand(1), m_FNeg(m_Value(X))))
return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
return nullptr;
// Try to reassociate C / X expressions where X includes another constant.
Constant *C2, *NewC = nullptr;
if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
// C / (X * C2) --> (C / C2) / X
NewC = ConstantExpr::getFDiv(C, C2);
} else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
// C / (X / C2) --> (C * C2) / X
NewC = ConstantExpr::getFMul(C, C2);
}
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
if (!NewC || !NewC->isNormalFP())
return nullptr;
return BinaryOperator::CreateFDivFMF(NewC, X, &I);
}
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *R = foldFDivConstantDivisor(I))
return R;
if (Instruction *R = foldFDivConstantDividend(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<Constant>(Op1))
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
Value *X, *Y;
if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op1))) {
// (X / Y) / Z => X / (Y * Z)
Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
return BinaryOperator::CreateFDivFMF(X, YZ, &I);
}
if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op0))) {
// Z / (X / Y) => (Y * Z) / X
Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
return BinaryOperator::CreateFDivFMF(YZ, X, &I);
}
}
if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
// sin(X) / cos(X) -> tan(X)
// cos(X) / sin(X) -> 1/tan(X) (cotangent)
Value *X;
bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
bool IsCot =
!IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
LibFunc_tanf, LibFunc_tanl)) {
IRBuilder<> B(&I);
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(I.getFastMathFlags());
AttributeList Attrs =
cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
if (IsCot)
Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
return replaceInstUsesWith(I, Res);
}
}
// -X / -Y -> X / Y
Value *X, *Y;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
I.setOperand(0, X);
I.setOperand(1, Y);
return &I;
}
// X / (X * Y) --> 1.0 / Y
// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
// We can ignore the possibility that X is infinity because INF/INF is NaN.
if (I.hasNoNaNs() && I.hasAllowReassoc() &&
match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
I.setOperand(1, Y);
return &I;
}
return nullptr;
}
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
/// Common integer remainder transforms
Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
I.setOperand(1, V);
return &I;
}
// Handle cases involving: rem X, (select Cond, Y, Z)
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
if (isa<Constant>(Op1)) {
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
} else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
const APInt *Op1Int;
if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
(I.getOpcode() == Instruction::URem ||
!Op1Int->isMinSignedValue())) {
// foldOpIntoPhi will speculate instructions to the end of the PHI's
// predecessor blocks, so do this only if we know the srem or urem
// will not fault.
if (Instruction *NV = foldOpIntoPhi(I, PN))
return NV;
}
}
// See if we can fold away this rem instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
}
}
return nullptr;
}
Instruction *InstCombiner::visitURem(BinaryOperator &I) {
if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *common = commonIRemTransforms(I))
return common;
if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
return NarrowRem;
// X urem Y -> X and Y-1, where Y is a power of 2,
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
Constant *N1 = Constant::getAllOnesValue(Ty);
Value *Add = Builder.CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
}
// 1 urem X -> zext(X != 1)
if (match(Op0, m_One()))
return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
// X urem C -> X < C ? X : X - C, where C >= signbit.
if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
Value *Sub = Builder.CreateSub(Op0, Op1);
return SelectInst::Create(Cmp, Op0, Sub);
}
// If the divisor is a sext of a boolean, then the divisor must be max
// unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
// max unsigned value. In that case, the remainder is 0:
// urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
Value *X;
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
}
return nullptr;
}
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
{
const APInt *Y;
// X % -Y -> X % Y
if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
return &I;
}
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
MaskedValueIsZero(Op0, Mask, 0, &I)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
// If it's a constant vector, flip any negative values positive.
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
Constant *C = cast<Constant>(Op1);
unsigned VWidth = C->getType()->getVectorNumElements();
bool hasNegative = false;
bool hasMissing = false;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt) {
hasMissing = true;
break;
}
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
if (RHS->isNegative())
hasNegative = true;
}
if (hasNegative && !hasMissing) {
SmallVector<Constant *, 16> Elts(VWidth);
for (unsigned i = 0; i != VWidth; ++i) {
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
if (RHS->isNegative())
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
}
}
Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != C) { // Don't loop on -MININT
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, NewRHSV);
return &I;
}
}
}
return nullptr;
}
Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
return nullptr;
}