1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/include/llvm/Analysis/TargetLibraryInfo.h

342 lines
12 KiB
C
Raw Normal View History

//===-- TargetLibraryInfo.h - Library information ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETLIBRARYINFO_H
#define LLVM_ANALYSIS_TARGETLIBRARYINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Triple.h"
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
namespace llvm {
template <typename T> class ArrayRef;
/// Describes a possible vectorization of a function.
/// Function 'VectorFnName' is equivalent to 'ScalarFnName' vectorized
/// by a factor 'VectorizationFactor'.
struct VecDesc {
const char *ScalarFnName;
const char *VectorFnName;
unsigned VectorizationFactor;
};
namespace LibFunc {
enum Func {
#define TLI_DEFINE_ENUM
#include "llvm/Analysis/TargetLibraryInfo.def"
NumLibFuncs
};
}
/// Implementation of the target library information.
///
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
/// This class constructs tables that hold the target library information and
/// make it available. However, it is somewhat expensive to compute and only
/// depends on the triple. So users typically interact with the \c
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
/// TargetLibraryInfo wrapper below.
class TargetLibraryInfoImpl {
friend class TargetLibraryInfo;
unsigned char AvailableArray[(LibFunc::NumLibFuncs+3)/4];
llvm::DenseMap<unsigned, std::string> CustomNames;
static const char *const StandardNames[LibFunc::NumLibFuncs];
enum AvailabilityState {
StandardName = 3, // (memset to all ones)
CustomName = 1,
Unavailable = 0 // (memset to all zeros)
};
void setState(LibFunc::Func F, AvailabilityState State) {
AvailableArray[F/4] &= ~(3 << 2*(F&3));
AvailableArray[F/4] |= State << 2*(F&3);
}
AvailabilityState getState(LibFunc::Func F) const {
return static_cast<AvailabilityState>((AvailableArray[F/4] >> 2*(F&3)) & 3);
}
/// Vectorization descriptors - sorted by ScalarFnName.
std::vector<VecDesc> VectorDescs;
/// Scalarization descriptors - same content as VectorDescs but sorted based
/// on VectorFnName rather than ScalarFnName.
std::vector<VecDesc> ScalarDescs;
/// Return true if the function type FTy is valid for the library function
/// F, regardless of whether the function is available.
bool isValidProtoForLibFunc(const FunctionType &FTy, LibFunc::Func F,
const DataLayout *DL) const;
public:
/// List of known vector-functions libraries.
///
/// The vector-functions library defines, which functions are vectorizable
/// and with which factor. The library can be specified by either frontend,
/// or a commandline option, and then used by
/// addVectorizableFunctionsFromVecLib for filling up the tables of
/// vectorizable functions.
enum VectorLibrary {
NoLibrary, // Don't use any vector library.
Accelerate, // Use Accelerate framework.
SVML // Intel short vector math library.
};
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
TargetLibraryInfoImpl();
explicit TargetLibraryInfoImpl(const Triple &T);
// Provide value semantics.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
TargetLibraryInfoImpl(const TargetLibraryInfoImpl &TLI);
TargetLibraryInfoImpl(TargetLibraryInfoImpl &&TLI);
TargetLibraryInfoImpl &operator=(const TargetLibraryInfoImpl &TLI);
TargetLibraryInfoImpl &operator=(TargetLibraryInfoImpl &&TLI);
2014-07-23 02:42:52 +02:00
/// Searches for a particular function name.
///
/// If it is one of the known library functions, return true and set F to the
/// corresponding value.
bool getLibFunc(StringRef funcName, LibFunc::Func &F) const;
/// Searches for a particular function name, also checking that its type is
/// valid for the library function matching that name.
///
/// If it is one of the known library functions, return true and set F to the
/// corresponding value.
bool getLibFunc(const Function &FDecl, LibFunc::Func &F) const;
/// Forces a function to be marked as unavailable.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
void setUnavailable(LibFunc::Func F) {
setState(F, Unavailable);
}
/// Forces a function to be marked as available.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
void setAvailable(LibFunc::Func F) {
setState(F, StandardName);
}
/// Forces a function to be marked as available and provide an alternate name
/// that must be used.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
void setAvailableWithName(LibFunc::Func F, StringRef Name) {
if (StandardNames[F] != Name) {
setState(F, CustomName);
CustomNames[F] = Name;
assert(CustomNames.find(F) != CustomNames.end());
} else {
setState(F, StandardName);
}
}
/// Disables all builtins.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
///
/// This can be used for options like -fno-builtin.
void disableAllFunctions();
/// Add a set of scalar -> vector mappings, queryable via
/// getVectorizedFunction and getScalarizedFunction.
void addVectorizableFunctions(ArrayRef<VecDesc> Fns);
/// Calls addVectorizableFunctions with a known preset of functions for the
/// given vector library.
void addVectorizableFunctionsFromVecLib(enum VectorLibrary VecLib);
/// Return true if the function F has a vector equivalent with vectorization
/// factor VF.
bool isFunctionVectorizable(StringRef F, unsigned VF) const {
return !getVectorizedFunction(F, VF).empty();
}
/// Return true if the function F has a vector equivalent with any
/// vectorization factor.
bool isFunctionVectorizable(StringRef F) const;
/// Return the name of the equivalent of F, vectorized with factor VF. If no
/// such mapping exists, return the empty string.
StringRef getVectorizedFunction(StringRef F, unsigned VF) const;
/// Return true if the function F has a scalar equivalent, and set VF to be
/// the vectorization factor.
bool isFunctionScalarizable(StringRef F, unsigned &VF) const {
return !getScalarizedFunction(F, VF).empty();
}
/// Return the name of the equivalent of F, scalarized. If no such mapping
/// exists, return the empty string.
///
/// Set VF to the vectorization factor.
StringRef getScalarizedFunction(StringRef F, unsigned &VF) const;
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
};
/// Provides information about what library functions are available for
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
/// the current target.
///
/// This both allows optimizations to handle them specially and frontends to
/// disable such optimizations through -fno-builtin etc.
class TargetLibraryInfo {
friend class TargetLibraryAnalysis;
friend class TargetLibraryInfoWrapperPass;
const TargetLibraryInfoImpl *Impl;
public:
explicit TargetLibraryInfo(const TargetLibraryInfoImpl &Impl) : Impl(&Impl) {}
// Provide value semantics.
TargetLibraryInfo(const TargetLibraryInfo &TLI) : Impl(TLI.Impl) {}
TargetLibraryInfo(TargetLibraryInfo &&TLI) : Impl(TLI.Impl) {}
TargetLibraryInfo &operator=(const TargetLibraryInfo &TLI) {
Impl = TLI.Impl;
return *this;
}
TargetLibraryInfo &operator=(TargetLibraryInfo &&TLI) {
Impl = TLI.Impl;
return *this;
}
/// Searches for a particular function name.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
///
/// If it is one of the known library functions, return true and set F to the
/// corresponding value.
bool getLibFunc(StringRef funcName, LibFunc::Func &F) const {
return Impl->getLibFunc(funcName, F);
}
bool getLibFunc(const Function &FDecl, LibFunc::Func &F) const {
return Impl->getLibFunc(FDecl, F);
}
/// Tests whether a library function is available.
bool has(LibFunc::Func F) const {
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
return Impl->getState(F) != TargetLibraryInfoImpl::Unavailable;
}
bool isFunctionVectorizable(StringRef F, unsigned VF) const {
return Impl->isFunctionVectorizable(F, VF);
}
bool isFunctionVectorizable(StringRef F) const {
return Impl->isFunctionVectorizable(F);
}
StringRef getVectorizedFunction(StringRef F, unsigned VF) const {
return Impl->getVectorizedFunction(F, VF);
}
/// Tests if the function is both available and a candidate for optimized code
/// generation.
bool hasOptimizedCodeGen(LibFunc::Func F) const {
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
if (Impl->getState(F) == TargetLibraryInfoImpl::Unavailable)
return false;
switch (F) {
default: break;
case LibFunc::copysign: case LibFunc::copysignf: case LibFunc::copysignl:
case LibFunc::fabs: case LibFunc::fabsf: case LibFunc::fabsl:
case LibFunc::sin: case LibFunc::sinf: case LibFunc::sinl:
case LibFunc::cos: case LibFunc::cosf: case LibFunc::cosl:
case LibFunc::sqrt: case LibFunc::sqrtf: case LibFunc::sqrtl:
case LibFunc::sqrt_finite: case LibFunc::sqrtf_finite:
case LibFunc::sqrtl_finite:
case LibFunc::fmax: case LibFunc::fmaxf: case LibFunc::fmaxl:
case LibFunc::fmin: case LibFunc::fminf: case LibFunc::fminl:
case LibFunc::floor: case LibFunc::floorf: case LibFunc::floorl:
case LibFunc::nearbyint: case LibFunc::nearbyintf: case LibFunc::nearbyintl:
case LibFunc::ceil: case LibFunc::ceilf: case LibFunc::ceill:
case LibFunc::rint: case LibFunc::rintf: case LibFunc::rintl:
case LibFunc::round: case LibFunc::roundf: case LibFunc::roundl:
case LibFunc::trunc: case LibFunc::truncf: case LibFunc::truncl:
case LibFunc::log2: case LibFunc::log2f: case LibFunc::log2l:
case LibFunc::exp2: case LibFunc::exp2f: case LibFunc::exp2l:
case LibFunc::memcmp: case LibFunc::strcmp: case LibFunc::strcpy:
case LibFunc::stpcpy: case LibFunc::strlen: case LibFunc::strnlen:
case LibFunc::memchr: case LibFunc::mempcpy:
return true;
}
return false;
}
StringRef getName(LibFunc::Func F) const {
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
auto State = Impl->getState(F);
if (State == TargetLibraryInfoImpl::Unavailable)
return StringRef();
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
if (State == TargetLibraryInfoImpl::StandardName)
return Impl->StandardNames[F];
assert(State == TargetLibraryInfoImpl::CustomName);
return Impl->CustomNames.find(F)->second;
}
/// Handle invalidation from the pass manager.
///
/// If we try to invalidate this info, just return false. It cannot become
/// invalid even if the module changes.
bool invalidate(Module &, const PreservedAnalyses &) { return false; }
bool invalidate(Function &, const PreservedAnalyses &) { return false; }
};
/// Analysis pass providing the \c TargetLibraryInfo.
///
/// Note that this pass's result cannot be invalidated, it is immutable for the
/// life of the module.
class TargetLibraryAnalysis : public AnalysisInfoMixin<TargetLibraryAnalysis> {
public:
typedef TargetLibraryInfo Result;
/// Default construct the library analysis.
///
/// This will use the module's triple to construct the library info for that
/// module.
TargetLibraryAnalysis() {}
/// Construct a library analysis with preset info.
///
/// This will directly copy the preset info into the result without
/// consulting the module's triple.
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
TargetLibraryAnalysis(TargetLibraryInfoImpl PresetInfoImpl)
: PresetInfoImpl(std::move(PresetInfoImpl)) {}
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
// Move semantics. We spell out the constructors for MSVC.
TargetLibraryAnalysis(TargetLibraryAnalysis &&Arg)
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
: PresetInfoImpl(std::move(Arg.PresetInfoImpl)), Impls(std::move(Arg.Impls)) {}
TargetLibraryAnalysis &operator=(TargetLibraryAnalysis &&RHS) {
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
PresetInfoImpl = std::move(RHS.PresetInfoImpl);
Impls = std::move(RHS.Impls);
return *this;
}
TargetLibraryInfo run(Module &M, ModuleAnalysisManager &);
TargetLibraryInfo run(Function &F, FunctionAnalysisManager &);
private:
friend AnalysisInfoMixin<TargetLibraryAnalysis>;
static char PassID;
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
Optional<TargetLibraryInfoImpl> PresetInfoImpl;
StringMap<std::unique_ptr<TargetLibraryInfoImpl>> Impls;
TargetLibraryInfoImpl &lookupInfoImpl(const Triple &T);
};
class TargetLibraryInfoWrapperPass : public ImmutablePass {
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
TargetLibraryInfoImpl TLIImpl;
TargetLibraryInfo TLI;
virtual void anchor();
public:
static char ID;
TargetLibraryInfoWrapperPass();
explicit TargetLibraryInfoWrapperPass(const Triple &T);
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. llvm-svn: 226981
2015-01-24 03:06:09 +01:00
explicit TargetLibraryInfoWrapperPass(const TargetLibraryInfoImpl &TLI);
TargetLibraryInfo &getTLI() { return TLI; }
const TargetLibraryInfo &getTLI() const { return TLI; }
};
} // end namespace llvm
#endif