2009-10-26 17:59:04 +01:00
|
|
|
//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the CriticalAntiDepBreaker class, which
|
|
|
|
// implements register anti-dependence breaking along a blocks
|
|
|
|
// critical path during post-RA scheduler.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "CriticalAntiDepBreaker.h"
|
|
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2012-12-03 17:50:05 +01:00
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
2014-08-04 23:25:23 +02:00
|
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
2014-04-22 04:02:50 +02:00
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
|
|
|
2014-08-04 23:25:23 +02:00
|
|
|
CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
|
|
|
|
const RegisterClassInfo &RCI)
|
|
|
|
: AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
|
2014-08-05 04:39:49 +02:00
|
|
|
TII(MF.getSubtarget().getInstrInfo()),
|
|
|
|
TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
|
|
|
|
Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
|
|
|
|
DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
|
|
|
|
}
|
|
|
|
|
|
|
|
void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
|
2009-12-09 18:18:22 +01:00
|
|
|
const unsigned BBSize = BB->size();
|
2010-07-15 21:58:14 +02:00
|
|
|
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
|
|
|
|
// Clear out the register class data.
|
2014-04-14 02:51:57 +02:00
|
|
|
Classes[i] = nullptr;
|
2010-07-15 21:58:14 +02:00
|
|
|
|
|
|
|
// Initialize the indices to indicate that no registers are live.
|
2009-12-09 18:18:22 +01:00
|
|
|
KillIndices[i] = ~0u;
|
|
|
|
DefIndices[i] = BBSize;
|
|
|
|
}
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// Clear "do not change" set.
|
2012-03-17 21:22:57 +01:00
|
|
|
KeepRegs.reset();
|
2009-10-26 17:59:04 +01:00
|
|
|
|
2012-03-16 16:46:47 +01:00
|
|
|
bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
|
2009-10-26 17:59:04 +01:00
|
|
|
|
2013-02-05 19:21:52 +01:00
|
|
|
// Examine the live-in regs of all successors.
|
2010-06-16 09:35:02 +02:00
|
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
2009-10-26 17:59:04 +01:00
|
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
2010-06-16 09:35:02 +02:00
|
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
2009-10-26 17:59:04 +01:00
|
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
2012-06-01 22:36:54 +02:00
|
|
|
for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
|
|
|
|
unsigned Reg = *AI;
|
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
KillIndices[Reg] = BBSize;
|
|
|
|
DefIndices[Reg] = ~0u;
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
2010-06-16 09:35:02 +02:00
|
|
|
}
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// Mark live-out callee-saved registers. In a return block this is
|
|
|
|
// all callee-saved registers. In non-return this is any
|
|
|
|
// callee-saved register that is not saved in the prolog.
|
|
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
BitVector Pristine = MFI->getPristineRegs(BB);
|
2014-04-04 07:16:06 +02:00
|
|
|
for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
|
2012-06-01 22:36:54 +02:00
|
|
|
if (!IsReturnBlock && !Pristine.test(*I)) continue;
|
|
|
|
for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
|
|
|
|
unsigned Reg = *AI;
|
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
KillIndices[Reg] = BBSize;
|
|
|
|
DefIndices[Reg] = ~0u;
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CriticalAntiDepBreaker::FinishBlock() {
|
|
|
|
RegRefs.clear();
|
2012-03-17 21:22:57 +01:00
|
|
|
KeepRegs.reset();
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
|
|
|
|
unsigned InsertPosIndex) {
|
2014-08-20 20:03:00 +02:00
|
|
|
// Kill instructions can define registers but are really nops, and there might
|
|
|
|
// be a real definition earlier that needs to be paired with uses dominated by
|
|
|
|
// this kill.
|
|
|
|
|
|
|
|
// FIXME: It may be possible to remove the isKill() restriction once PR18663
|
|
|
|
// has been properly fixed. There can be value in processing kills as seen in
|
|
|
|
// the AggressiveAntiDepBreaker class.
|
|
|
|
if (MI->isDebugValue() || MI->isKill())
|
2010-03-05 01:02:59 +01:00
|
|
|
return;
|
2009-10-26 17:59:04 +01:00
|
|
|
assert(Count < InsertPosIndex && "Instruction index out of expected range!");
|
|
|
|
|
2010-10-02 03:49:29 +02:00
|
|
|
for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
|
|
|
|
if (KillIndices[Reg] != ~0u) {
|
|
|
|
// If Reg is currently live, then mark that it can't be renamed as
|
|
|
|
// we don't know the extent of its live-range anymore (now that it
|
|
|
|
// has been scheduled).
|
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
KillIndices[Reg] = Count;
|
|
|
|
} else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
|
|
|
|
// Any register which was defined within the previous scheduling region
|
|
|
|
// may have been rescheduled and its lifetime may overlap with registers
|
|
|
|
// in ways not reflected in our current liveness state. For each such
|
|
|
|
// register, adjust the liveness state to be conservatively correct.
|
2009-10-26 17:59:04 +01:00
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
2010-07-15 21:58:14 +02:00
|
|
|
|
2009-10-26 17:59:04 +01:00
|
|
|
// Move the def index to the end of the previous region, to reflect
|
|
|
|
// that the def could theoretically have been scheduled at the end.
|
|
|
|
DefIndices[Reg] = InsertPosIndex;
|
|
|
|
}
|
2010-10-02 03:49:29 +02:00
|
|
|
}
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
PrescanInstruction(MI);
|
|
|
|
ScanInstruction(MI, Count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
|
|
|
|
/// critical path.
|
2010-04-20 01:11:58 +02:00
|
|
|
static const SDep *CriticalPathStep(const SUnit *SU) {
|
2014-04-14 02:51:57 +02:00
|
|
|
const SDep *Next = nullptr;
|
2009-10-26 17:59:04 +01:00
|
|
|
unsigned NextDepth = 0;
|
|
|
|
// Find the predecessor edge with the greatest depth.
|
2010-04-20 01:11:58 +02:00
|
|
|
for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
2009-10-26 17:59:04 +01:00
|
|
|
P != PE; ++P) {
|
2010-04-20 01:11:58 +02:00
|
|
|
const SUnit *PredSU = P->getSUnit();
|
2009-10-26 17:59:04 +01:00
|
|
|
unsigned PredLatency = P->getLatency();
|
|
|
|
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
|
|
|
|
// In the case of a latency tie, prefer an anti-dependency edge over
|
|
|
|
// other types of edges.
|
|
|
|
if (NextDepth < PredTotalLatency ||
|
|
|
|
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
|
|
|
|
NextDepth = PredTotalLatency;
|
|
|
|
Next = &*P;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Next;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
|
2010-06-16 09:35:02 +02:00
|
|
|
// It's not safe to change register allocation for source operands of
|
2014-06-24 23:11:51 +02:00
|
|
|
// instructions that have special allocation requirements. Also assume all
|
|
|
|
// registers used in a call must not be changed (ABI).
|
2010-06-16 09:35:02 +02:00
|
|
|
// FIXME: The issue with predicated instruction is more complex. We are being
|
2010-09-11 00:42:21 +02:00
|
|
|
// conservative here because the kill markers cannot be trusted after
|
2010-06-16 09:35:02 +02:00
|
|
|
// if-conversion:
|
|
|
|
// %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
|
|
|
|
// ...
|
|
|
|
// STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
|
|
|
|
// %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
|
|
|
|
// STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
|
|
|
|
//
|
|
|
|
// The first R6 kill is not really a kill since it's killed by a predicated
|
|
|
|
// instruction which may not be executed. The second R6 def may or may not
|
|
|
|
// re-define R6 so it's not safe to change it since the last R6 use cannot be
|
|
|
|
// changed.
|
2011-12-07 08:15:52 +01:00
|
|
|
bool Special = MI->isCall() ||
|
|
|
|
MI->hasExtraSrcRegAllocReq() ||
|
2010-06-16 09:35:02 +02:00
|
|
|
TII->isPredicated(MI);
|
|
|
|
|
2009-10-26 17:59:04 +01:00
|
|
|
// Scan the register operands for this instruction and update
|
|
|
|
// Classes and RegRefs.
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (!MO.isReg()) continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
if (Reg == 0) continue;
|
2014-04-14 02:51:57 +02:00
|
|
|
const TargetRegisterClass *NewRC = nullptr;
|
2010-05-14 23:20:46 +02:00
|
|
|
|
2009-10-26 17:59:04 +01:00
|
|
|
if (i < MI->getDesc().getNumOperands())
|
2012-05-08 00:10:26 +02:00
|
|
|
NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
|
|
// class is consistent across all uses.
|
|
|
|
if (!Classes[Reg] && NewRC)
|
|
|
|
Classes[Reg] = NewRC;
|
|
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
|
|
|
|
// Now check for aliases.
|
2012-06-02 01:28:30 +02:00
|
|
|
for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
|
2009-10-26 17:59:04 +01:00
|
|
|
// If an alias of the reg is used during the live range, give up.
|
|
|
|
// Note that this allows us to skip checking if AntiDepReg
|
|
|
|
// overlaps with any of the aliases, among other things.
|
2012-06-02 01:28:30 +02:00
|
|
|
unsigned AliasReg = *AI;
|
2009-10-26 17:59:04 +01:00
|
|
|
if (Classes[AliasReg]) {
|
|
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we're still willing to consider this register, note the reference.
|
|
|
|
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
|
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
|
2014-07-03 17:19:40 +02:00
|
|
|
// If this reg is tied and live (Classes[Reg] is set to -1), we can't change
|
|
|
|
// it or any of its sub or super regs. We need to use KeepRegs to mark the
|
|
|
|
// reg because not all uses of the same reg within an instruction are
|
|
|
|
// necessarily tagged as tied.
|
|
|
|
// Example: an x86 "xor %eax, %eax" will have one source operand tied to the
|
|
|
|
// def register but not the second (see PR20020 for details).
|
|
|
|
// FIXME: can this check be relaxed to account for undef uses
|
|
|
|
// of a register? In the above 'xor' example, the uses of %eax are undef, so
|
|
|
|
// earlier instructions could still replace %eax even though the 'xor'
|
|
|
|
// itself can't be changed.
|
|
|
|
if (MI->isRegTiedToUseOperand(i) &&
|
|
|
|
Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
|
|
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
|
|
SubRegs.isValid(); ++SubRegs) {
|
|
|
|
KeepRegs.set(*SubRegs);
|
|
|
|
}
|
|
|
|
for (MCSuperRegIterator SuperRegs(Reg, TRI);
|
|
|
|
SuperRegs.isValid(); ++SuperRegs) {
|
|
|
|
KeepRegs.set(*SuperRegs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-06-16 09:35:02 +02:00
|
|
|
if (MO.isUse() && Special) {
|
2012-03-17 21:22:57 +01:00
|
|
|
if (!KeepRegs.test(Reg)) {
|
2013-05-23 01:17:36 +02:00
|
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
|
|
SubRegs.isValid(); ++SubRegs)
|
2012-06-02 01:28:30 +02:00
|
|
|
KeepRegs.set(*SubRegs);
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
|
|
|
|
unsigned Count) {
|
|
|
|
// Update liveness.
|
2012-06-02 12:20:22 +02:00
|
|
|
// Proceeding upwards, registers that are defed but not used in this
|
2009-10-26 17:59:04 +01:00
|
|
|
// instruction are now dead.
|
2014-08-20 20:03:00 +02:00
|
|
|
assert(!MI->isKill() && "Attempting to scan a kill instruction");
|
2010-06-16 09:35:02 +02:00
|
|
|
|
|
|
|
if (!TII->isPredicated(MI)) {
|
|
|
|
// Predicated defs are modeled as read + write, i.e. similar to two
|
|
|
|
// address updates.
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
MachineOperand &MO = MI->getOperand(i);
|
2012-02-23 02:15:26 +01:00
|
|
|
|
|
|
|
if (MO.isRegMask())
|
|
|
|
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
|
|
|
|
if (MO.clobbersPhysReg(i)) {
|
|
|
|
DefIndices[i] = Count;
|
|
|
|
KillIndices[i] = ~0u;
|
2012-03-17 21:22:57 +01:00
|
|
|
KeepRegs.reset(i);
|
2014-04-14 02:51:57 +02:00
|
|
|
Classes[i] = nullptr;
|
2012-02-23 02:15:26 +01:00
|
|
|
RegRefs.erase(i);
|
|
|
|
}
|
|
|
|
|
2010-06-16 09:35:02 +02:00
|
|
|
if (!MO.isReg()) continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
if (Reg == 0) continue;
|
|
|
|
if (!MO.isDef()) continue;
|
2014-07-03 17:19:40 +02:00
|
|
|
|
|
|
|
// If we've already marked this reg as unchangeable, carry on.
|
|
|
|
if (KeepRegs.test(Reg)) continue;
|
|
|
|
|
2010-06-16 09:35:02 +02:00
|
|
|
// Ignore two-addr defs.
|
|
|
|
if (MI->isRegTiedToUseOperand(i)) continue;
|
|
|
|
|
2014-08-06 17:58:15 +02:00
|
|
|
// For the reg itself and all subregs: update the def to current;
|
|
|
|
// reset the kill state, any restrictions, and references.
|
|
|
|
for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
|
|
|
|
unsigned SubregReg = *SRI;
|
2010-06-16 09:35:02 +02:00
|
|
|
DefIndices[SubregReg] = Count;
|
|
|
|
KillIndices[SubregReg] = ~0u;
|
2012-03-17 21:22:57 +01:00
|
|
|
KeepRegs.reset(SubregReg);
|
2014-04-14 02:51:57 +02:00
|
|
|
Classes[SubregReg] = nullptr;
|
2010-06-16 09:35:02 +02:00
|
|
|
RegRefs.erase(SubregReg);
|
|
|
|
}
|
|
|
|
// Conservatively mark super-registers as unusable.
|
2012-06-02 01:28:30 +02:00
|
|
|
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
|
|
|
|
Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (!MO.isReg()) continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
if (Reg == 0) continue;
|
|
|
|
if (!MO.isUse()) continue;
|
|
|
|
|
2014-04-14 02:51:57 +02:00
|
|
|
const TargetRegisterClass *NewRC = nullptr;
|
2009-10-26 17:59:04 +01:00
|
|
|
if (i < MI->getDesc().getNumOperands())
|
2012-05-08 00:10:26 +02:00
|
|
|
NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
|
|
// class is consistent across all uses.
|
|
|
|
if (!Classes[Reg] && NewRC)
|
|
|
|
Classes[Reg] = NewRC;
|
|
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
|
|
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
|
|
|
|
// It wasn't previously live but now it is, this is a kill.
|
2014-08-06 17:58:15 +02:00
|
|
|
// Repeat for all aliases.
|
|
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
|
2012-06-02 01:28:30 +02:00
|
|
|
unsigned AliasReg = *AI;
|
2009-10-26 17:59:04 +01:00
|
|
|
if (KillIndices[AliasReg] == ~0u) {
|
|
|
|
KillIndices[AliasReg] = Count;
|
|
|
|
DefIndices[AliasReg] = ~0u;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-02-08 18:39:46 +01:00
|
|
|
// Check all machine operands that reference the antidependent register and must
|
|
|
|
// be replaced by NewReg. Return true if any of their parent instructions may
|
|
|
|
// clobber the new register.
|
|
|
|
//
|
|
|
|
// Note: AntiDepReg may be referenced by a two-address instruction such that
|
|
|
|
// it's use operand is tied to a def operand. We guard against the case in which
|
|
|
|
// the two-address instruction also defines NewReg, as may happen with
|
|
|
|
// pre/postincrement loads. In this case, both the use and def operands are in
|
|
|
|
// RegRefs because the def is inserted by PrescanInstruction and not erased
|
2014-06-24 23:11:51 +02:00
|
|
|
// during ScanInstruction. So checking for an instruction with definitions of
|
2011-02-08 18:39:46 +01:00
|
|
|
// both NewReg and AntiDepReg covers it.
|
2010-11-02 19:16:45 +01:00
|
|
|
bool
|
2011-02-08 18:39:46 +01:00
|
|
|
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
|
|
|
|
RegRefIter RegRefEnd,
|
|
|
|
unsigned NewReg)
|
2010-11-02 19:16:45 +01:00
|
|
|
{
|
|
|
|
for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
|
2011-02-08 18:39:46 +01:00
|
|
|
MachineOperand *RefOper = I->second;
|
|
|
|
|
|
|
|
// Don't allow the instruction defining AntiDepReg to earlyclobber its
|
|
|
|
// operands, in case they may be assigned to NewReg. In this case antidep
|
|
|
|
// breaking must fail, but it's too rare to bother optimizing.
|
|
|
|
if (RefOper->isDef() && RefOper->isEarlyClobber())
|
2010-11-02 19:16:45 +01:00
|
|
|
return true;
|
2011-02-08 18:39:46 +01:00
|
|
|
|
2014-06-24 23:11:51 +02:00
|
|
|
// Handle cases in which this instruction defines NewReg.
|
2011-02-08 18:39:46 +01:00
|
|
|
MachineInstr *MI = RefOper->getParent();
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
const MachineOperand &CheckOper = MI->getOperand(i);
|
|
|
|
|
2012-02-23 02:15:26 +01:00
|
|
|
if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
|
|
|
|
return true;
|
|
|
|
|
2011-02-08 18:39:46 +01:00
|
|
|
if (!CheckOper.isReg() || !CheckOper.isDef() ||
|
|
|
|
CheckOper.getReg() != NewReg)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Don't allow the instruction to define NewReg and AntiDepReg.
|
|
|
|
// When AntiDepReg is renamed it will be an illegal op.
|
|
|
|
if (RefOper->isDef())
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Don't allow an instruction using AntiDepReg to be earlyclobbered by
|
2014-06-24 23:11:51 +02:00
|
|
|
// NewReg.
|
2011-02-08 18:39:46 +01:00
|
|
|
if (CheckOper.isEarlyClobber())
|
|
|
|
return true;
|
|
|
|
|
2014-06-24 23:11:51 +02:00
|
|
|
// Don't allow inline asm to define NewReg at all. Who knows what it's
|
2011-02-08 18:39:46 +01:00
|
|
|
// doing with it.
|
|
|
|
if (MI->isInlineAsm())
|
|
|
|
return true;
|
|
|
|
}
|
2010-11-02 19:16:45 +01:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
unsigned CriticalAntiDepBreaker::
|
|
|
|
findSuitableFreeRegister(RegRefIter RegRefBegin,
|
|
|
|
RegRefIter RegRefEnd,
|
|
|
|
unsigned AntiDepReg,
|
|
|
|
unsigned LastNewReg,
|
|
|
|
const TargetRegisterClass *RC,
|
2013-07-03 07:16:59 +02:00
|
|
|
SmallVectorImpl<unsigned> &Forbid)
|
2010-01-06 17:48:02 +01:00
|
|
|
{
|
2012-11-29 04:34:17 +01:00
|
|
|
ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
|
2011-06-16 23:56:21 +02:00
|
|
|
for (unsigned i = 0; i != Order.size(); ++i) {
|
|
|
|
unsigned NewReg = Order[i];
|
2009-10-26 17:59:04 +01:00
|
|
|
// Don't replace a register with itself.
|
|
|
|
if (NewReg == AntiDepReg) continue;
|
|
|
|
// Don't replace a register with one that was recently used to repair
|
|
|
|
// an anti-dependence with this AntiDepReg, because that would
|
|
|
|
// re-introduce that anti-dependence.
|
|
|
|
if (NewReg == LastNewReg) continue;
|
2010-11-02 19:16:45 +01:00
|
|
|
// If any instructions that define AntiDepReg also define the NewReg, it's
|
|
|
|
// not suitable. For example, Instruction with multiple definitions can
|
|
|
|
// result in this condition.
|
2011-02-08 18:39:46 +01:00
|
|
|
if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
|
2009-10-26 17:59:04 +01:00
|
|
|
// If NewReg is dead and NewReg's most recent def is not before
|
|
|
|
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
|
2010-01-06 17:48:02 +01:00
|
|
|
assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
|
|
|
|
&& "Kill and Def maps aren't consistent for AntiDepReg!");
|
|
|
|
assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
|
|
|
|
&& "Kill and Def maps aren't consistent for NewReg!");
|
2009-10-26 17:59:04 +01:00
|
|
|
if (KillIndices[NewReg] != ~0u ||
|
|
|
|
Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
|
|
|
|
KillIndices[AntiDepReg] > DefIndices[NewReg])
|
|
|
|
continue;
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
// If NewReg overlaps any of the forbidden registers, we can't use it.
|
|
|
|
bool Forbidden = false;
|
2013-07-03 07:11:49 +02:00
|
|
|
for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
ite = Forbid.end(); it != ite; ++it)
|
|
|
|
if (TRI->regsOverlap(NewReg, *it)) {
|
|
|
|
Forbidden = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (Forbidden) continue;
|
2009-10-26 17:59:04 +01:00
|
|
|
return NewReg;
|
|
|
|
}
|
|
|
|
|
|
|
|
// No registers are free and available!
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned CriticalAntiDepBreaker::
|
2010-04-20 01:11:58 +02:00
|
|
|
BreakAntiDependencies(const std::vector<SUnit>& SUnits,
|
|
|
|
MachineBasicBlock::iterator Begin,
|
|
|
|
MachineBasicBlock::iterator End,
|
2011-06-02 23:26:52 +02:00
|
|
|
unsigned InsertPosIndex,
|
|
|
|
DbgValueVector &DbgValues) {
|
2009-10-26 17:59:04 +01:00
|
|
|
// The code below assumes that there is at least one instruction,
|
|
|
|
// so just duck out immediately if the block is empty.
|
|
|
|
if (SUnits.empty()) return 0;
|
|
|
|
|
2010-06-02 01:48:44 +02:00
|
|
|
// Keep a map of the MachineInstr*'s back to the SUnit representing them.
|
|
|
|
// This is used for updating debug information.
|
2012-02-22 07:08:11 +01:00
|
|
|
//
|
|
|
|
// FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
|
2010-06-02 01:48:44 +02:00
|
|
|
DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
|
|
|
|
|
2009-10-26 17:59:04 +01:00
|
|
|
// Find the node at the bottom of the critical path.
|
2014-04-14 02:51:57 +02:00
|
|
|
const SUnit *Max = nullptr;
|
2009-10-26 17:59:04 +01:00
|
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
2010-04-20 01:11:58 +02:00
|
|
|
const SUnit *SU = &SUnits[i];
|
2010-06-02 01:48:44 +02:00
|
|
|
MISUnitMap[SU->getInstr()] = SU;
|
2009-10-26 17:59:04 +01:00
|
|
|
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
|
|
|
|
Max = SU;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef NDEBUG
|
|
|
|
{
|
2010-01-04 18:47:05 +01:00
|
|
|
DEBUG(dbgs() << "Critical path has total latency "
|
2009-10-26 17:59:04 +01:00
|
|
|
<< (Max->getDepth() + Max->Latency) << "\n");
|
2010-01-04 18:47:05 +01:00
|
|
|
DEBUG(dbgs() << "Available regs:");
|
2009-10-26 17:59:04 +01:00
|
|
|
for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
|
|
|
|
if (KillIndices[Reg] == ~0u)
|
2010-01-04 18:47:05 +01:00
|
|
|
DEBUG(dbgs() << " " << TRI->getName(Reg));
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
2010-01-04 18:47:05 +01:00
|
|
|
DEBUG(dbgs() << '\n');
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Track progress along the critical path through the SUnit graph as we walk
|
|
|
|
// the instructions.
|
2010-04-20 01:11:58 +02:00
|
|
|
const SUnit *CriticalPathSU = Max;
|
2009-10-26 17:59:04 +01:00
|
|
|
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
|
|
|
|
|
|
|
|
// Consider this pattern:
|
|
|
|
// A = ...
|
|
|
|
// ... = A
|
|
|
|
// A = ...
|
|
|
|
// ... = A
|
|
|
|
// A = ...
|
|
|
|
// ... = A
|
|
|
|
// A = ...
|
|
|
|
// ... = A
|
|
|
|
// There are three anti-dependencies here, and without special care,
|
|
|
|
// we'd break all of them using the same register:
|
|
|
|
// A = ...
|
|
|
|
// ... = A
|
|
|
|
// B = ...
|
|
|
|
// ... = B
|
|
|
|
// B = ...
|
|
|
|
// ... = B
|
|
|
|
// B = ...
|
|
|
|
// ... = B
|
|
|
|
// because at each anti-dependence, B is the first register that
|
|
|
|
// isn't A which is free. This re-introduces anti-dependencies
|
|
|
|
// at all but one of the original anti-dependencies that we were
|
|
|
|
// trying to break. To avoid this, keep track of the most recent
|
|
|
|
// register that each register was replaced with, avoid
|
|
|
|
// using it to repair an anti-dependence on the same register.
|
|
|
|
// This lets us produce this:
|
|
|
|
// A = ...
|
|
|
|
// ... = A
|
|
|
|
// B = ...
|
|
|
|
// ... = B
|
|
|
|
// C = ...
|
|
|
|
// ... = C
|
|
|
|
// B = ...
|
|
|
|
// ... = B
|
|
|
|
// This still has an anti-dependence on B, but at least it isn't on the
|
|
|
|
// original critical path.
|
|
|
|
//
|
|
|
|
// TODO: If we tracked more than one register here, we could potentially
|
|
|
|
// fix that remaining critical edge too. This is a little more involved,
|
|
|
|
// because unlike the most recent register, less recent registers should
|
|
|
|
// still be considered, though only if no other registers are available.
|
2010-07-15 21:58:14 +02:00
|
|
|
std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// Attempt to break anti-dependence edges on the critical path. Walk the
|
|
|
|
// instructions from the bottom up, tracking information about liveness
|
|
|
|
// as we go to help determine which registers are available.
|
|
|
|
unsigned Broken = 0;
|
|
|
|
unsigned Count = InsertPosIndex - 1;
|
2014-06-24 23:11:51 +02:00
|
|
|
for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
|
2009-10-26 17:59:04 +01:00
|
|
|
MachineInstr *MI = --I;
|
2014-08-20 20:03:00 +02:00
|
|
|
// Kill instructions can define registers but are really nops, and there
|
|
|
|
// might be a real definition earlier that needs to be paired with uses
|
|
|
|
// dominated by this kill.
|
|
|
|
|
|
|
|
// FIXME: It may be possible to remove the isKill() restriction once PR18663
|
|
|
|
// has been properly fixed. There can be value in processing kills as seen
|
|
|
|
// in the AggressiveAntiDepBreaker class.
|
|
|
|
if (MI->isDebugValue() || MI->isKill())
|
2010-03-05 01:02:59 +01:00
|
|
|
continue;
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// Check if this instruction has a dependence on the critical path that
|
|
|
|
// is an anti-dependence that we may be able to break. If it is, set
|
|
|
|
// AntiDepReg to the non-zero register associated with the anti-dependence.
|
|
|
|
//
|
|
|
|
// We limit our attention to the critical path as a heuristic to avoid
|
|
|
|
// breaking anti-dependence edges that aren't going to significantly
|
|
|
|
// impact the overall schedule. There are a limited number of registers
|
|
|
|
// and we want to save them for the important edges.
|
2010-05-14 23:20:46 +02:00
|
|
|
//
|
2009-10-26 17:59:04 +01:00
|
|
|
// TODO: Instructions with multiple defs could have multiple
|
|
|
|
// anti-dependencies. The current code here only knows how to break one
|
|
|
|
// edge per instruction. Note that we'd have to be able to break all of
|
|
|
|
// the anti-dependencies in an instruction in order to be effective.
|
|
|
|
unsigned AntiDepReg = 0;
|
|
|
|
if (MI == CriticalPathMI) {
|
2010-04-20 01:11:58 +02:00
|
|
|
if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
|
|
|
|
const SUnit *NextSU = Edge->getSUnit();
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// Only consider anti-dependence edges.
|
|
|
|
if (Edge->getKind() == SDep::Anti) {
|
|
|
|
AntiDepReg = Edge->getReg();
|
|
|
|
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
|
2012-10-16 00:41:03 +02:00
|
|
|
if (!MRI.isAllocatable(AntiDepReg))
|
2009-10-26 17:59:04 +01:00
|
|
|
// Don't break anti-dependencies on non-allocatable registers.
|
|
|
|
AntiDepReg = 0;
|
2012-03-17 21:22:57 +01:00
|
|
|
else if (KeepRegs.test(AntiDepReg))
|
2014-06-24 23:11:51 +02:00
|
|
|
// Don't break anti-dependencies if a use down below requires
|
2009-10-26 17:59:04 +01:00
|
|
|
// this exact register.
|
|
|
|
AntiDepReg = 0;
|
|
|
|
else {
|
|
|
|
// If the SUnit has other dependencies on the SUnit that it
|
|
|
|
// anti-depends on, don't bother breaking the anti-dependency
|
|
|
|
// since those edges would prevent such units from being
|
|
|
|
// scheduled past each other regardless.
|
|
|
|
//
|
|
|
|
// Also, if there are dependencies on other SUnits with the
|
|
|
|
// same register as the anti-dependency, don't attempt to
|
|
|
|
// break it.
|
2010-04-20 01:11:58 +02:00
|
|
|
for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
|
2009-10-26 17:59:04 +01:00
|
|
|
PE = CriticalPathSU->Preds.end(); P != PE; ++P)
|
|
|
|
if (P->getSUnit() == NextSU ?
|
|
|
|
(P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
|
|
|
|
(P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
|
|
|
|
AntiDepReg = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CriticalPathSU = NextSU;
|
|
|
|
CriticalPathMI = CriticalPathSU->getInstr();
|
|
|
|
} else {
|
|
|
|
// We've reached the end of the critical path.
|
2014-04-14 02:51:57 +02:00
|
|
|
CriticalPathSU = nullptr;
|
|
|
|
CriticalPathMI = nullptr;
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PrescanInstruction(MI);
|
|
|
|
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
SmallVector<unsigned, 2> ForbidRegs;
|
|
|
|
|
2010-06-16 09:35:02 +02:00
|
|
|
// If MI's defs have a special allocation requirement, don't allow
|
|
|
|
// any def registers to be changed. Also assume all registers
|
|
|
|
// defined in a call must not be changed (ABI).
|
2014-06-24 23:11:51 +02:00
|
|
|
if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
|
2009-10-26 17:59:04 +01:00
|
|
|
// If this instruction's defs have special allocation requirement, don't
|
|
|
|
// break this anti-dependency.
|
|
|
|
AntiDepReg = 0;
|
|
|
|
else if (AntiDepReg) {
|
|
|
|
// If this instruction has a use of AntiDepReg, breaking it
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
// is invalid. If the instruction defines other registers,
|
|
|
|
// save a list of them so that we don't pick a new register
|
|
|
|
// that overlaps any of them.
|
2009-10-26 17:59:04 +01:00
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (!MO.isReg()) continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
if (Reg == 0) continue;
|
2010-06-16 09:35:02 +02:00
|
|
|
if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
|
2009-10-26 17:59:04 +01:00
|
|
|
AntiDepReg = 0;
|
|
|
|
break;
|
|
|
|
}
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
if (MO.isDef() && Reg != AntiDepReg)
|
|
|
|
ForbidRegs.push_back(Reg);
|
2009-10-26 17:59:04 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Determine AntiDepReg's register class, if it is live and is
|
|
|
|
// consistently used within a single class.
|
2014-04-14 02:51:57 +02:00
|
|
|
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
|
|
|
|
: nullptr;
|
|
|
|
assert((AntiDepReg == 0 || RC != nullptr) &&
|
2009-10-26 17:59:04 +01:00
|
|
|
"Register should be live if it's causing an anti-dependence!");
|
|
|
|
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
|
|
|
|
AntiDepReg = 0;
|
|
|
|
|
2014-01-24 18:20:08 +01:00
|
|
|
// Look for a suitable register to use to break the anti-dependence.
|
2009-10-26 17:59:04 +01:00
|
|
|
//
|
|
|
|
// TODO: Instead of picking the first free register, consider which might
|
|
|
|
// be the best.
|
|
|
|
if (AntiDepReg != 0) {
|
2010-11-02 19:16:45 +01:00
|
|
|
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
|
|
|
|
std::multimap<unsigned, MachineOperand *>::iterator>
|
|
|
|
Range = RegRefs.equal_range(AntiDepReg);
|
|
|
|
if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
|
|
|
|
AntiDepReg,
|
2009-10-26 17:59:04 +01:00
|
|
|
LastNewReg[AntiDepReg],
|
This patch addresses bug 15031.
The common code in the post-RA scheduler to break anti-dependencies on the
critical path contained a flaw. In the reported case, an anti-dependency
between the overlapping registers %X4 and %R4 exists:
%X29<def> = OR8 %X4, %X4
%R4<def>, %X3<def,dead,tied3> = LBZU 1, %X3<kill,tied1>
The unpatched code breaks the dependency by replacing %R4 and its uses
with %R3, the first register on the available list. However, %R3 and
%X3 overlap, so this creates two overlapping definitions on the same
instruction.
The fix is straightforward, preventing selection of a register that
overlaps any other defined register on the same instruction.
The test case is reduced from the bug report, and verifies that we no
longer produce "lbzu 3, 1(3)" when breaking this anti-dependency.
llvm-svn: 173706
2013-01-28 19:36:58 +01:00
|
|
|
RC, ForbidRegs)) {
|
2010-01-04 18:47:05 +01:00
|
|
|
DEBUG(dbgs() << "Breaking anti-dependence edge on "
|
2009-10-26 17:59:04 +01:00
|
|
|
<< TRI->getName(AntiDepReg)
|
|
|
|
<< " with " << RegRefs.count(AntiDepReg) << " references"
|
|
|
|
<< " using " << TRI->getName(NewReg) << "!\n");
|
|
|
|
|
|
|
|
// Update the references to the old register to refer to the new
|
|
|
|
// register.
|
|
|
|
for (std::multimap<unsigned, MachineOperand *>::iterator
|
2010-06-02 01:48:44 +02:00
|
|
|
Q = Range.first, QE = Range.second; Q != QE; ++Q) {
|
2009-10-26 17:59:04 +01:00
|
|
|
Q->second->setReg(NewReg);
|
2010-06-02 01:48:44 +02:00
|
|
|
// If the SU for the instruction being updated has debug information
|
|
|
|
// related to the anti-dependency register, make sure to update that
|
|
|
|
// as well.
|
|
|
|
const SUnit *SU = MISUnitMap[Q->second->getParent()];
|
2010-06-02 17:29:36 +02:00
|
|
|
if (!SU) continue;
|
2011-06-02 23:26:52 +02:00
|
|
|
for (DbgValueVector::iterator DVI = DbgValues.begin(),
|
|
|
|
DVE = DbgValues.end(); DVI != DVE; ++DVI)
|
|
|
|
if (DVI->second == Q->second->getParent())
|
|
|
|
UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
|
2010-06-02 01:48:44 +02:00
|
|
|
}
|
2009-10-26 17:59:04 +01:00
|
|
|
|
|
|
|
// We just went back in time and modified history; the
|
2010-10-02 03:49:29 +02:00
|
|
|
// liveness information for the anti-dependence reg is now
|
2009-10-26 17:59:04 +01:00
|
|
|
// inconsistent. Set the state as if it were dead.
|
|
|
|
Classes[NewReg] = Classes[AntiDepReg];
|
|
|
|
DefIndices[NewReg] = DefIndices[AntiDepReg];
|
|
|
|
KillIndices[NewReg] = KillIndices[AntiDepReg];
|
|
|
|
assert(((KillIndices[NewReg] == ~0u) !=
|
|
|
|
(DefIndices[NewReg] == ~0u)) &&
|
|
|
|
"Kill and Def maps aren't consistent for NewReg!");
|
|
|
|
|
2014-04-14 02:51:57 +02:00
|
|
|
Classes[AntiDepReg] = nullptr;
|
2009-10-26 17:59:04 +01:00
|
|
|
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
|
|
|
|
KillIndices[AntiDepReg] = ~0u;
|
|
|
|
assert(((KillIndices[AntiDepReg] == ~0u) !=
|
|
|
|
(DefIndices[AntiDepReg] == ~0u)) &&
|
|
|
|
"Kill and Def maps aren't consistent for AntiDepReg!");
|
|
|
|
|
|
|
|
RegRefs.erase(AntiDepReg);
|
|
|
|
LastNewReg[AntiDepReg] = NewReg;
|
|
|
|
++Broken;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ScanInstruction(MI, Count);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Broken;
|
|
|
|
}
|