1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Transforms/Scalar/LoopDataPrefetch.cpp

422 lines
14 KiB
C++
Raw Normal View History

//===-------- LoopDataPrefetch.cpp - Loop Data Prefetching Pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a Loop Data Prefetching Pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
#include "llvm/InitializePasses.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#define DEBUG_TYPE "loop-data-prefetch"
using namespace llvm;
// By default, we limit this to creating 16 PHIs (which is a little over half
// of the allocatable register set).
static cl::opt<bool>
PrefetchWrites("loop-prefetch-writes", cl::Hidden, cl::init(false),
cl::desc("Prefetch write addresses"));
static cl::opt<unsigned>
PrefetchDistance("prefetch-distance",
cl::desc("Number of instructions to prefetch ahead"),
cl::Hidden);
static cl::opt<unsigned>
MinPrefetchStride("min-prefetch-stride",
cl::desc("Min stride to add prefetches"), cl::Hidden);
static cl::opt<unsigned> MaxPrefetchIterationsAhead(
"max-prefetch-iters-ahead",
cl::desc("Max number of iterations to prefetch ahead"), cl::Hidden);
STATISTIC(NumPrefetches, "Number of prefetches inserted");
namespace {
/// Loop prefetch implementation class.
class LoopDataPrefetch {
public:
LoopDataPrefetch(AssumptionCache *AC, DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, const TargetTransformInfo *TTI,
OptimizationRemarkEmitter *ORE)
: AC(AC), DT(DT), LI(LI), SE(SE), TTI(TTI), ORE(ORE) {}
bool run();
private:
bool runOnLoop(Loop *L);
/// Check if the stride of the accesses is large enough to
/// warrant a prefetch.
bool isStrideLargeEnough(const SCEVAddRecExpr *AR, unsigned TargetMinStride);
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) {
if (MinPrefetchStride.getNumOccurrences() > 0)
return MinPrefetchStride;
return TTI->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
unsigned getPrefetchDistance() {
if (PrefetchDistance.getNumOccurrences() > 0)
return PrefetchDistance;
return TTI->getPrefetchDistance();
}
unsigned getMaxPrefetchIterationsAhead() {
if (MaxPrefetchIterationsAhead.getNumOccurrences() > 0)
return MaxPrefetchIterationsAhead;
return TTI->getMaxPrefetchIterationsAhead();
}
bool doPrefetchWrites() {
if (PrefetchWrites.getNumOccurrences() > 0)
return PrefetchWrites;
return TTI->enableWritePrefetching();
}
AssumptionCache *AC;
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
const TargetTransformInfo *TTI;
OptimizationRemarkEmitter *ORE;
};
/// Legacy class for inserting loop data prefetches.
class LoopDataPrefetchLegacyPass : public FunctionPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopDataPrefetchLegacyPass() : FunctionPass(ID) {
initializeLoopDataPrefetchLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
}
char LoopDataPrefetchLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDataPrefetchLegacyPass, "loop-data-prefetch",
"Loop Data Prefetch", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
[PM] Port ScalarEvolution to the new pass manager. This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 llvm-svn: 245193
2015-08-17 04:08:17 +02:00
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(LoopDataPrefetchLegacyPass, "loop-data-prefetch",
"Loop Data Prefetch", false, false)
FunctionPass *llvm::createLoopDataPrefetchPass() {
return new LoopDataPrefetchLegacyPass();
}
bool LoopDataPrefetch::isStrideLargeEnough(const SCEVAddRecExpr *AR,
unsigned TargetMinStride) {
// No need to check if any stride goes.
if (TargetMinStride <= 1)
return true;
const auto *ConstStride = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
// If MinStride is set, don't prefetch unless we can ensure that stride is
// larger.
if (!ConstStride)
return false;
unsigned AbsStride = std::abs(ConstStride->getAPInt().getSExtValue());
return TargetMinStride <= AbsStride;
}
PreservedAnalyses LoopDataPrefetchPass::run(Function &F,
FunctionAnalysisManager &AM) {
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
ScalarEvolution *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
OptimizationRemarkEmitter *ORE =
&AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
const TargetTransformInfo *TTI = &AM.getResult<TargetIRAnalysis>(F);
LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE);
bool Changed = LDP.run();
if (Changed) {
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
return PA;
}
return PreservedAnalyses::all();
}
bool LoopDataPrefetchLegacyPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
AssumptionCache *AC =
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
OptimizationRemarkEmitter *ORE =
&getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
const TargetTransformInfo *TTI =
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE);
return LDP.run();
}
bool LoopDataPrefetch::run() {
// If PrefetchDistance is not set, don't run the pass. This gives an
// opportunity for targets to run this pass for selected subtargets only
// (whose TTI sets PrefetchDistance).
if (getPrefetchDistance() == 0)
return false;
assert(TTI->getCacheLineSize() && "Cache line size is not set for target");
bool MadeChange = false;
for (Loop *I : *LI)
for (auto L = df_begin(I), LE = df_end(I); L != LE; ++L)
MadeChange |= runOnLoop(*L);
return MadeChange;
}
/// A record for a potential prefetch made during the initial scan of the
/// loop. This is used to let a single prefetch target multiple memory accesses.
struct Prefetch {
/// The address formula for this prefetch as returned by ScalarEvolution.
const SCEVAddRecExpr *LSCEVAddRec;
/// The point of insertion for the prefetch instruction.
Instruction *InsertPt;
/// True if targeting a write memory access.
bool Writes;
/// The (first seen) prefetched instruction.
Instruction *MemI;
2020-05-06 11:22:31 +02:00
/// Constructor to create a new Prefetch for \p I.
Prefetch(const SCEVAddRecExpr *L, Instruction *I)
: LSCEVAddRec(L), InsertPt(nullptr), Writes(false), MemI(nullptr) {
addInstruction(I);
};
/// Add the instruction \param I to this prefetch. If it's not the first
/// one, 'InsertPt' and 'Writes' will be updated as required.
/// \param PtrDiff the known constant address difference to the first added
/// instruction.
void addInstruction(Instruction *I, DominatorTree *DT = nullptr,
int64_t PtrDiff = 0) {
if (!InsertPt) {
MemI = I;
InsertPt = I;
Writes = isa<StoreInst>(I);
} else {
BasicBlock *PrefBB = InsertPt->getParent();
BasicBlock *InsBB = I->getParent();
if (PrefBB != InsBB) {
BasicBlock *DomBB = DT->findNearestCommonDominator(PrefBB, InsBB);
if (DomBB != PrefBB)
InsertPt = DomBB->getTerminator();
}
if (isa<StoreInst>(I) && PtrDiff == 0)
Writes = true;
}
}
};
bool LoopDataPrefetch::runOnLoop(Loop *L) {
bool MadeChange = false;
// Only prefetch in the inner-most loop
if (!L->isInnermost())
return MadeChange;
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
// Calculate the number of iterations ahead to prefetch
CodeMetrics Metrics;
bool HasCall = false;
for (const auto BB : L->blocks()) {
// If the loop already has prefetches, then assume that the user knows
// what they are doing and don't add any more.
for (auto &I : *BB) {
if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (F->getIntrinsicID() == Intrinsic::prefetch)
return MadeChange;
if (TTI->isLoweredToCall(F))
HasCall = true;
} else { // indirect call.
HasCall = true;
}
}
}
Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
}
unsigned LoopSize = Metrics.NumInsts;
if (!LoopSize)
LoopSize = 1;
unsigned ItersAhead = getPrefetchDistance() / LoopSize;
if (!ItersAhead)
ItersAhead = 1;
if (ItersAhead > getMaxPrefetchIterationsAhead())
return MadeChange;
unsigned ConstantMaxTripCount = SE->getSmallConstantMaxTripCount(L);
if (ConstantMaxTripCount && ConstantMaxTripCount < ItersAhead + 1)
return MadeChange;
unsigned NumMemAccesses = 0;
unsigned NumStridedMemAccesses = 0;
SmallVector<Prefetch, 16> Prefetches;
for (const auto BB : L->blocks())
for (auto &I : *BB) {
Value *PtrValue;
Instruction *MemI;
if (LoadInst *LMemI = dyn_cast<LoadInst>(&I)) {
MemI = LMemI;
PtrValue = LMemI->getPointerOperand();
} else if (StoreInst *SMemI = dyn_cast<StoreInst>(&I)) {
if (!doPrefetchWrites()) continue;
MemI = SMemI;
PtrValue = SMemI->getPointerOperand();
} else continue;
unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace();
if (PtrAddrSpace)
continue;
NumMemAccesses++;
if (L->isLoopInvariant(PtrValue))
continue;
const SCEV *LSCEV = SE->getSCEV(PtrValue);
const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
if (!LSCEVAddRec)
continue;
NumStridedMemAccesses++;
// We don't want to double prefetch individual cache lines. If this
// access is known to be within one cache line of some other one that
// has already been prefetched, then don't prefetch this one as well.
bool DupPref = false;
for (auto &Pref : Prefetches) {
const SCEV *PtrDiff = SE->getMinusSCEV(LSCEVAddRec, Pref.LSCEVAddRec);
if (const SCEVConstant *ConstPtrDiff =
dyn_cast<SCEVConstant>(PtrDiff)) {
int64_t PD = std::abs(ConstPtrDiff->getValue()->getSExtValue());
if (PD < (int64_t) TTI->getCacheLineSize()) {
Pref.addInstruction(MemI, DT, PD);
DupPref = true;
break;
}
}
}
if (!DupPref)
Prefetches.push_back(Prefetch(LSCEVAddRec, MemI));
}
unsigned TargetMinStride =
getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
Prefetches.size(), HasCall);
LLVM_DEBUG(dbgs() << "Prefetching " << ItersAhead
<< " iterations ahead (loop size: " << LoopSize << ") in "
<< L->getHeader()->getParent()->getName() << ": " << *L);
LLVM_DEBUG(dbgs() << "Loop has: "
<< NumMemAccesses << " memory accesses, "
<< NumStridedMemAccesses << " strided memory accesses, "
<< Prefetches.size() << " potential prefetch(es), "
<< "a minimum stride of " << TargetMinStride << ", "
<< (HasCall ? "calls" : "no calls") << ".\n");
for (auto &P : Prefetches) {
// Check if the stride of the accesses is large enough to warrant a
// prefetch.
if (!isStrideLargeEnough(P.LSCEVAddRec, TargetMinStride))
continue;
const SCEV *NextLSCEV = SE->getAddExpr(P.LSCEVAddRec, SE->getMulExpr(
SE->getConstant(P.LSCEVAddRec->getType(), ItersAhead),
P.LSCEVAddRec->getStepRecurrence(*SE)));
if (!isSafeToExpand(NextLSCEV, *SE))
continue;
BasicBlock *BB = P.InsertPt->getParent();
Type *I8Ptr = Type::getInt8PtrTy(BB->getContext(), 0/*PtrAddrSpace*/);
SCEVExpander SCEVE(*SE, BB->getModule()->getDataLayout(), "prefaddr");
Value *PrefPtrValue = SCEVE.expandCodeFor(NextLSCEV, I8Ptr, P.InsertPt);
IRBuilder<> Builder(P.InsertPt);
Module *M = BB->getParent()->getParent();
Type *I32 = Type::getInt32Ty(BB->getContext());
Function *PrefetchFunc = Intrinsic::getDeclaration(
M, Intrinsic::prefetch, PrefPtrValue->getType());
Builder.CreateCall(
PrefetchFunc,
{PrefPtrValue,
ConstantInt::get(I32, P.Writes),
ConstantInt::get(I32, 3), ConstantInt::get(I32, 1)});
++NumPrefetches;
LLVM_DEBUG(dbgs() << " Access: "
<< *P.MemI->getOperand(isa<LoadInst>(P.MemI) ? 0 : 1)
<< ", SCEV: " << *P.LSCEVAddRec << "\n");
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Prefetched", P.MemI)
<< "prefetched memory access";
});
MadeChange = true;
}
return MadeChange;
}