2013-01-07 04:08:10 +01:00
|
|
|
//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
|
2012-10-19 01:22:48 +02:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2013-01-07 04:08:10 +01:00
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
#include "llvm/Analysis/TargetTransformInfoImpl.h"
|
2014-03-04 12:01:28 +01:00
|
|
|
#include "llvm/IR/CallSite.h"
|
2013-01-21 02:27:39 +01:00
|
|
|
#include "llvm/IR/DataLayout.h"
|
|
|
|
#include "llvm/IR/Instruction.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
2014-01-07 12:48:04 +01:00
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
2015-02-01 11:11:22 +01:00
|
|
|
#include "llvm/IR/Module.h"
|
2014-01-07 12:48:04 +01:00
|
|
|
#include "llvm/IR/Operator.h"
|
2012-10-19 01:22:48 +02:00
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
2014-04-22 04:48:03 +02:00
|
|
|
#define DEBUG_TYPE "tti"
|
|
|
|
|
2015-01-31 12:17:59 +01:00
|
|
|
namespace {
|
|
|
|
/// \brief No-op implementation of the TTI interface using the utility base
|
|
|
|
/// classes.
|
|
|
|
///
|
|
|
|
/// This is used when no target specific information is available.
|
|
|
|
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
|
2015-07-09 04:08:42 +02:00
|
|
|
explicit NoTTIImpl(const DataLayout &DL)
|
2015-01-31 12:17:59 +01:00
|
|
|
: TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2015-07-09 04:08:42 +02:00
|
|
|
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
|
2015-01-31 12:17:59 +01:00
|
|
|
: TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
|
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
TargetTransformInfo::~TargetTransformInfo() {}
|
2012-10-19 01:22:48 +02:00
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
|
|
|
|
: TTIImpl(std::move(Arg.TTIImpl)) {}
|
Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
2013-01-07 02:37:14 +01:00
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
|
|
|
|
TTIImpl = std::move(RHS.TTIImpl);
|
|
|
|
return *this;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
|
|
|
|
Type *OpTy) const {
|
|
|
|
int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-21 02:27:39 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
|
|
|
|
int Cost = TTIImpl->getCallCost(FTy, NumArgs);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-22 12:26:02 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getCallCost(const Function *F,
|
|
|
|
ArrayRef<const Value *> Arguments) const {
|
|
|
|
int Cost = TTIImpl->getCallCost(F, Arguments);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-22 12:26:02 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getIntrinsicCost(
|
|
|
|
Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
|
|
|
|
int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-22 12:26:02 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getUserCost(const User *U) const {
|
|
|
|
int Cost = TTIImpl->getUserCost(U);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-21 02:27:39 +01:00
|
|
|
}
|
|
|
|
|
2013-07-27 02:01:07 +02:00
|
|
|
bool TargetTransformInfo::hasBranchDivergence() const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->hasBranchDivergence();
|
2013-07-27 02:01:07 +02:00
|
|
|
}
|
|
|
|
|
Divergence analysis for GPU programs
Summary:
Some optimizations such as jump threading and loop unswitching can negatively
affect performance when applied to divergent branches. The divergence analysis
added in this patch conservatively estimates which branches in a GPU program
can diverge. This information can then help LLVM to run certain optimizations
selectively.
Test Plan: test/Analysis/DivergenceAnalysis/NVPTX/diverge.ll
Reviewers: resistor, hfinkel, eliben, meheff, jholewinski
Subscribers: broune, bjarke.roune, madhur13490, tstellarAMD, dberlin, echristo, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8576
llvm-svn: 234567
2015-04-10 07:03:50 +02:00
|
|
|
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
|
|
|
|
return TTIImpl->isSourceOfDivergence(V);
|
|
|
|
}
|
|
|
|
|
2013-01-22 12:26:02 +01:00
|
|
|
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->isLoweredToCall(F);
|
2013-01-22 12:26:02 +01:00
|
|
|
}
|
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
void TargetTransformInfo::getUnrollingPreferences(
|
2015-02-01 15:31:23 +01:00
|
|
|
Loop *L, UnrollingPreferences &UP) const {
|
|
|
|
return TTIImpl->getUnrollingPreferences(L, UP);
|
2013-09-11 21:25:43 +02:00
|
|
|
}
|
|
|
|
|
2013-01-05 12:43:11 +01:00
|
|
|
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->isLegalAddImmediate(Imm);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->isLegalICmpImmediate(Imm);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
|
|
|
|
int64_t BaseOffset,
|
|
|
|
bool HasBaseReg,
|
2015-06-07 22:12:03 +02:00
|
|
|
int64_t Scale,
|
|
|
|
unsigned AddrSpace) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
|
2015-06-07 22:12:03 +02:00
|
|
|
Scale, AddrSpace);
|
2014-12-04 10:40:44 +01:00
|
|
|
}
|
|
|
|
|
2015-10-19 09:43:38 +02:00
|
|
|
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
|
|
|
|
return TTIImpl->isLegalMaskedStore(DataType);
|
2014-12-04 10:40:44 +01:00
|
|
|
}
|
|
|
|
|
2015-10-19 09:43:38 +02:00
|
|
|
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
|
|
|
|
return TTIImpl->isLegalMaskedLoad(DataType);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-10-25 16:37:55 +01:00
|
|
|
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
|
|
|
|
return TTIImpl->isLegalMaskedGather(DataType);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
|
|
|
|
return TTIImpl->isLegalMaskedGather(DataType);
|
|
|
|
}
|
|
|
|
|
2013-05-31 23:29:03 +02:00
|
|
|
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
|
|
int64_t BaseOffset,
|
|
|
|
bool HasBaseReg,
|
2015-06-07 22:12:03 +02:00
|
|
|
int64_t Scale,
|
|
|
|
unsigned AddrSpace) const {
|
2015-08-05 20:08:10 +02:00
|
|
|
int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
|
|
|
|
Scale, AddrSpace);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-05-31 23:29:03 +02:00
|
|
|
}
|
|
|
|
|
2013-01-05 12:43:11 +01:00
|
|
|
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->isTruncateFree(Ty1, Ty2);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-02-23 20:15:16 +01:00
|
|
|
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
|
|
|
|
return TTIImpl->isProfitableToHoist(I);
|
|
|
|
}
|
|
|
|
|
2013-01-05 12:43:11 +01:00
|
|
|
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->isTypeLegal(Ty);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getJumpBufAlignment() const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getJumpBufAlignment();
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned TargetTransformInfo::getJumpBufSize() const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getJumpBufSize();
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
bool TargetTransformInfo::shouldBuildLookupTables() const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->shouldBuildLookupTables();
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-03-07 00:12:04 +01:00
|
|
|
bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
|
|
|
|
return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
|
|
|
|
}
|
|
|
|
|
2015-08-10 16:50:54 +02:00
|
|
|
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
|
|
|
|
return TTIImpl->enableInterleavedAccessVectorization();
|
|
|
|
}
|
|
|
|
|
2013-01-07 04:16:03 +01:00
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
|
|
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getPopcntSupport(IntTyWidthInBit);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2013-08-23 12:27:02 +02:00
|
|
|
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->haveFastSqrt(Ty);
|
2013-08-23 12:27:02 +02:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
|
|
|
|
int Cost = TTIImpl->getFPOpCost(Ty);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2015-02-05 03:09:33 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
|
|
int Cost = TTIImpl->getIntImmCost(Imm, Ty);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
|
|
|
|
const APInt &Imm, Type *Ty) const {
|
|
|
|
int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2014-01-25 03:02:55 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
|
|
|
|
const APInt &Imm, Type *Ty) const {
|
|
|
|
int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2014-01-25 03:02:55 +01:00
|
|
|
}
|
|
|
|
|
2013-01-05 12:43:11 +01:00
|
|
|
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getNumberOfRegisters(Vector);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2013-01-09 23:29:00 +01:00
|
|
|
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getRegisterBitWidth(Vector);
|
2013-01-09 23:29:00 +01:00
|
|
|
}
|
|
|
|
|
2016-01-21 19:28:36 +01:00
|
|
|
unsigned TargetTransformInfo::getCacheLineSize() const {
|
|
|
|
return TTIImpl->getCacheLineSize();
|
|
|
|
}
|
|
|
|
|
2016-01-27 23:21:25 +01:00
|
|
|
unsigned TargetTransformInfo::getPrefetchDistance() const {
|
|
|
|
return TTIImpl->getPrefetchDistance();
|
|
|
|
}
|
|
|
|
|
2015-05-06 19:12:25 +02:00
|
|
|
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
|
|
|
|
return TTIImpl->getMaxInterleaveFactor(VF);
|
2013-01-09 02:15:42 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getArithmeticInstrCost(
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
|
|
|
|
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
|
2014-08-25 06:56:54 +02:00
|
|
|
OperandValueProperties Opd2PropInfo) const {
|
2015-08-05 20:08:10 +02:00
|
|
|
int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
|
|
|
|
Opd1PropInfo, Opd2PropInfo);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
|
|
|
|
Type *SubTp) const {
|
|
|
|
int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
|
|
Type *Src) const {
|
|
|
|
int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
|
|
|
|
int Cost = TTIImpl->getCFInstrCost(Opcode);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
|
|
Type *CondTy) const {
|
|
|
|
int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
|
|
unsigned Index) const {
|
|
|
|
int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
|
|
unsigned Alignment,
|
|
|
|
unsigned AddressSpace) const {
|
|
|
|
int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
|
|
|
|
unsigned Alignment,
|
|
|
|
unsigned AddressSpace) const {
|
|
|
|
int Cost =
|
|
|
|
TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2015-01-25 09:44:46 +01:00
|
|
|
}
|
|
|
|
|
2015-12-28 21:10:59 +01:00
|
|
|
int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
|
|
Value *Ptr, bool VariableMask,
|
|
|
|
unsigned Alignment) const {
|
|
|
|
int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
|
|
Alignment);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getInterleavedMemoryOpCost(
|
[LoopVectorize] Teach Loop Vectorizor about interleaved memory accesses.
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
a = A[i]; // load of even element
b = A[i+1]; // load of odd element
... // operations on a, b, c, d
A[i] = c; // store of even element
A[i+1] = d; // store of odd element
}
The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
%wide.vec = load <8 x i32>, <8 x i32>* %ptr
%vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
%vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
%interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'.
llvm-svn: 239291
2015-06-08 08:39:56 +02:00
|
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
|
|
unsigned Alignment, unsigned AddressSpace) const {
|
2015-08-05 20:08:10 +02:00
|
|
|
int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
|
|
Alignment, AddressSpace);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
[LoopVectorize] Teach Loop Vectorizor about interleaved memory accesses.
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
a = A[i]; // load of even element
b = A[i+1]; // load of odd element
... // operations on a, b, c, d
A[i] = c; // store of even element
A[i+1] = d; // store of odd element
}
The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
%wide.vec = load <8 x i32>, <8 x i32>* %ptr
%vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
%vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
%interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'.
llvm-svn: 239291
2015-06-08 08:39:56 +02:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
|
|
ArrayRef<Type *> Tys) const {
|
|
|
|
int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-12-28 21:10:59 +01:00
|
|
|
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
|
|
|
|
ArrayRef<Value *> Args) const {
|
|
|
|
int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
|
|
|
|
ArrayRef<Type *> Tys) const {
|
|
|
|
int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2015-03-17 20:26:23 +01:00
|
|
|
}
|
|
|
|
|
2013-01-05 12:43:11 +01:00
|
|
|
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getNumberOfParts(Tp);
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
|
|
|
|
bool IsComplex) const {
|
|
|
|
int Cost = TTIImpl->getAddressComputationCost(Tp, IsComplex);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
2013-02-08 15:50:48 +01:00
|
|
|
}
|
2013-01-05 12:43:11 +01:00
|
|
|
|
2015-08-05 20:08:10 +02:00
|
|
|
int TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty,
|
|
|
|
bool IsPairwiseForm) const {
|
|
|
|
int Cost = TTIImpl->getReductionCost(Opcode, Ty, IsPairwiseForm);
|
|
|
|
assert(Cost >= 0 && "TTI should not produce negative costs!");
|
|
|
|
return Cost;
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
unsigned
|
|
|
|
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
|
|
|
|
return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
|
Costmodel: Add support for horizontal vector reductions
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.
We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:
(v0, v1, v2, v3)
\ \ / /
\ \ /
+ +
(v0+v2, v1+v3, undef, undef)
\ /
((v0+v2) + (v1+v3), undef, undef)
%rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
%bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
%rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
%r = extractelement <4 x float> %bin.rdx8, i32 0
This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.
We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).
(v0, v1, v2, v3)
\ / \ /
(v0+v1, v2+v3, undef, undef)
\ /
((v0+v1)+(v2+v3), undef, undef, undef)
%rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
%rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
<4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
%bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
%rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
%rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
<4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
%bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
%r = extractelement <4 x float> %bin.rdx.1, i32 0
llvm-svn: 190876
2013-09-17 20:06:50 +02:00
|
|
|
}
|
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
|
|
|
|
MemIntrinsicInfo &Info) const {
|
|
|
|
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
|
2014-08-05 14:30:34 +02:00
|
|
|
}
|
|
|
|
|
2015-01-26 23:51:15 +01:00
|
|
|
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
|
|
|
|
IntrinsicInst *Inst, Type *ExpectedType) const {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
|
2015-01-26 23:51:15 +01:00
|
|
|
}
|
|
|
|
|
2015-07-30 00:09:48 +02:00
|
|
|
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
|
|
|
|
const Function *Callee) const {
|
|
|
|
return TTIImpl->areInlineCompatible(Caller, Callee);
|
2015-07-02 03:11:47 +02:00
|
|
|
}
|
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
TargetTransformInfo::Concept::~Concept() {}
|
2015-01-26 23:51:15 +01:00
|
|
|
|
2015-02-01 11:11:22 +01:00
|
|
|
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
|
|
|
|
|
|
|
|
TargetIRAnalysis::TargetIRAnalysis(
|
2015-09-17 01:38:13 +02:00
|
|
|
std::function<Result(const Function &)> TTICallback)
|
2015-02-01 11:11:22 +01:00
|
|
|
: TTICallback(TTICallback) {}
|
|
|
|
|
2015-09-17 01:38:13 +02:00
|
|
|
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F) {
|
2015-02-01 11:11:22 +01:00
|
|
|
return TTICallback(F);
|
|
|
|
}
|
|
|
|
|
2016-02-28 18:17:00 +01:00
|
|
|
template class llvm::AnalysisBase<TargetIRAnalysis>;
|
|
|
|
|
2015-09-17 01:38:13 +02:00
|
|
|
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
|
2015-07-09 04:08:42 +02:00
|
|
|
return Result(F.getParent()->getDataLayout());
|
2015-02-01 11:11:22 +01:00
|
|
|
}
|
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
// Register the basic pass.
|
|
|
|
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
|
|
|
|
"Target Transform Information", false, true)
|
|
|
|
char TargetTransformInfoWrapperPass::ID = 0;
|
2013-01-05 12:43:11 +01:00
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
void TargetTransformInfoWrapperPass::anchor() {}
|
2013-01-05 12:43:11 +01:00
|
|
|
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
|
2015-02-01 13:26:09 +01:00
|
|
|
: ImmutablePass(ID) {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
initializeTargetTransformInfoWrapperPassPass(
|
|
|
|
*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
|
2015-02-01 13:26:09 +01:00
|
|
|
TargetIRAnalysis TIRA)
|
|
|
|
: ImmutablePass(ID), TIRA(std::move(TIRA)) {
|
[PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
2015-01-31 04:43:40 +01:00
|
|
|
initializeTargetTransformInfoWrapperPassPass(
|
|
|
|
*PassRegistry::getPassRegistry());
|
|
|
|
}
|
2013-01-05 12:43:11 +01:00
|
|
|
|
2015-09-17 01:38:13 +02:00
|
|
|
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
|
2015-02-01 13:26:09 +01:00
|
|
|
TTI = TIRA.run(F);
|
|
|
|
return *TTI;
|
|
|
|
}
|
|
|
|
|
2015-01-31 12:17:59 +01:00
|
|
|
ImmutablePass *
|
2015-02-01 13:26:09 +01:00
|
|
|
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
|
|
|
|
return new TargetTransformInfoWrapperPass(std::move(TIRA));
|
2013-01-05 12:43:11 +01:00
|
|
|
}
|