1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/include/llvm/IR/Dominators.h

261 lines
7.6 KiB
C
Raw Normal View History

//===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominatorTree class, which provides fast and efficient
// dominance queries.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DOMINATORS_H
#define LLVM_IR_DOMINATORS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace llvm {
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
class BasicBlockEdge {
const BasicBlock *Start;
const BasicBlock *End;
public:
BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
Start(Start_), End(End_) { }
const BasicBlock *getStart() const {
return Start;
}
const BasicBlock *getEnd() const {
return End;
}
bool isSingleEdge() const;
};
/// \brief Concrete subclass of DominatorTreeBase that is used to compute a
/// normal dominator tree.
class DominatorTree : public FunctionPass {
public:
2007-05-03 03:11:54 +02:00
static char ID; // Pass ID, replacement for typeid
DominatorTreeBase<BasicBlock>* DT;
DominatorTree() : FunctionPass(ID) {
initializeDominatorTreePass(*PassRegistry::getPassRegistry());
DT = new DominatorTreeBase<BasicBlock>(false);
}
~DominatorTree() {
delete DT;
}
DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
/// \brief Returns the root blocks of the current CFG.
///
/// This may include multiple blocks if we are computing post dominators.
/// For forward dominators, this will always be a single block (the entry
/// node).
inline const std::vector<BasicBlock*> &getRoots() const {
return DT->getRoots();
}
inline BasicBlock *getRoot() const {
return DT->getRoot();
}
inline DomTreeNode *getRootNode() const {
return DT->getRootNode();
}
2008-07-01 19:44:24 +02:00
/// Get all nodes dominated by R, including R itself.
void getDescendants(BasicBlock *R,
SmallVectorImpl<BasicBlock *> &Result) const {
DT->getDescendants(R, Result);
}
/// \brief Returns *false* if the other dominator tree matches this dominator
/// tree.
2008-07-01 19:44:24 +02:00
inline bool compare(DominatorTree &Other) const {
DomTreeNode *R = getRootNode();
DomTreeNode *OtherR = Other.getRootNode();
2008-07-01 19:44:24 +02:00
if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
return true;
2008-07-01 19:44:24 +02:00
if (DT->compare(Other.getBase()))
return true;
return false;
}
2007-04-16 01:14:18 +02:00
virtual bool runOnFunction(Function &F);
virtual void verifyAnalysis() const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
2010-12-22 23:10:08 +01:00
inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
return DT->dominates(A, B);
}
inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
return DT->dominates(A, B);
}
// \brief Return true if Def dominates a use in User.
//
// This performs the special checks necessary if Def and User are in the same
// basic block. Note that Def doesn't dominate a use in Def itself!
bool dominates(const Instruction *Def, const Use &U) const;
bool dominates(const Instruction *Def, const Instruction *User) const;
bool dominates(const Instruction *Def, const BasicBlock *BB) const;
bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
return DT->properlyDominates(A, B);
}
bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
return DT->properlyDominates(A, B);
}
/// \brief Find nearest common dominator basic block for basic block A and B.
///
/// If there is no such block then return NULL.
inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
return DT->findNearestCommonDominator(A, B);
}
inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
const BasicBlock *B) {
return DT->findNearestCommonDominator(A, B);
}
inline DomTreeNode *operator[](BasicBlock *BB) const {
return DT->getNode(BB);
}
/// \brief Returns the DominatorTree node for the specified basic block.
///
/// This is the same as using operator[] on this class.
inline DomTreeNode *getNode(BasicBlock *BB) const {
return DT->getNode(BB);
}
/// \brief Add a new node to the dominator tree information.
///
/// This creates a new node as a child of DomBB dominator node, linking it
/// into the children list of the immediate dominator.
inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
return DT->addNewBlock(BB, DomBB);
}
/// \brief Updates the dominator tree information when a node's immediate
/// dominator changes.
inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
DT->changeImmediateDominator(N, NewIDom);
}
/// \brief Removes a node from the dominator tree.
///
/// The block must not dominate any other blocks. Removes node from its
/// immediate dominator's children list. Deletes dominator node associated
/// with basic block BB.
inline void eraseNode(BasicBlock *BB) {
DT->eraseNode(BB);
}
/// \brief BB is split and now it has one successor; update dominator tree to
/// reflect this change.
inline void splitBlock(BasicBlock* NewBB) {
DT->splitBlock(NewBB);
}
bool isReachableFromEntry(const BasicBlock* A) const {
return DT->isReachableFromEntry(A);
}
bool isReachableFromEntry(const Use &U) const;
2010-03-01 18:47:21 +01:00
virtual void releaseMemory() {
DT->releaseMemory();
}
virtual void print(raw_ostream &OS, const Module* M= 0) const;
};
//===-------------------------------------
// DominatorTree GraphTraits specializations so the DominatorTree can be
// iterable by generic graph iterators.
template <> struct GraphTraits<DomTreeNode*> {
typedef DomTreeNode NodeType;
typedef NodeType::iterator ChildIteratorType;
static NodeType *getEntryNode(NodeType *N) {
return N;
}
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->end();
}
typedef df_iterator<DomTreeNode*> nodes_iterator;
static nodes_iterator nodes_begin(DomTreeNode *N) {
return df_begin(getEntryNode(N));
}
static nodes_iterator nodes_end(DomTreeNode *N) {
return df_end(getEntryNode(N));
}
};
template <> struct GraphTraits<DominatorTree*>
: public GraphTraits<DomTreeNode*> {
static NodeType *getEntryNode(DominatorTree *DT) {
return DT->getRootNode();
}
static nodes_iterator nodes_begin(DominatorTree *N) {
return df_begin(getEntryNode(N));
}
static nodes_iterator nodes_end(DominatorTree *N) {
return df_end(getEntryNode(N));
}
};
} // End llvm namespace
#endif