1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 12:43:36 +01:00
llvm-mirror/lib/CodeGen/VirtRegMap.cpp

449 lines
16 KiB
C++
Raw Normal View History

//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumSpillSlots, "Number of spill slots allocated");
STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
//===----------------------------------------------------------------------===//
// VirtRegMap implementation
//===----------------------------------------------------------------------===//
char VirtRegMap::ID = 0;
INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
MRI = &mf.getRegInfo();
TII = mf.getSubtarget().getInstrInfo();
TRI = mf.getSubtarget().getRegisterInfo();
MF = &mf;
Virt2PhysMap.clear();
Virt2StackSlotMap.clear();
Virt2SplitMap.clear();
grow();
return false;
}
void VirtRegMap::grow() {
unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
Virt2PhysMap.resize(NumRegs);
Virt2StackSlotMap.resize(NumRegs);
Virt2SplitMap.resize(NumRegs);
}
unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
RC->getAlignment());
++NumSpillSlots;
return SS;
}
bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
unsigned Hint = MRI->getSimpleHint(VirtReg);
if (!Hint)
return 0;
if (TargetRegisterInfo::isVirtualRegister(Hint))
Hint = getPhys(Hint);
return getPhys(VirtReg) == Hint;
}
bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
return true;
if (TargetRegisterInfo::isVirtualRegister(Hint.second))
return hasPhys(Hint.second);
return false;
}
int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
}
void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
assert((SS >= 0 ||
(SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
"illegal fixed frame index");
Virt2StackSlotMap[virtReg] = SS;
}
void VirtRegMap::print(raw_ostream &OS, const Module*) const {
OS << "********** REGISTER MAP **********\n";
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
OS << '[' << PrintReg(Reg, TRI) << " -> "
<< PrintReg(Virt2PhysMap[Reg], TRI) << "] "
<< TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
}
}
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
<< "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
}
}
OS << '\n';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VirtRegMap::dump() const {
print(dbgs());
}
#endif
//===----------------------------------------------------------------------===//
// VirtRegRewriter
//===----------------------------------------------------------------------===//
//
// The VirtRegRewriter is the last of the register allocator passes.
// It rewrites virtual registers to physical registers as specified in the
// VirtRegMap analysis. It also updates live-in information on basic blocks
// according to LiveIntervals.
//
namespace {
class VirtRegRewriter : public MachineFunctionPass {
MachineFunction *MF;
const TargetMachine *TM;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
SlotIndexes *Indexes;
LiveIntervals *LIS;
VirtRegMap *VRM;
void rewrite();
void addMBBLiveIns();
bool readsUndefSubreg(const MachineOperand &MO) const;
void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
public:
static char ID;
VirtRegRewriter() : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction&) override;
};
} // end anonymous namespace
char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
"Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
"Virtual Register Rewriter", false, false)
char VirtRegRewriter::ID = 0;
void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
TM = &MF->getTarget();
TRI = MF->getSubtarget().getRegisterInfo();
TII = MF->getSubtarget().getInstrInfo();
MRI = &MF->getRegInfo();
Indexes = &getAnalysis<SlotIndexes>();
LIS = &getAnalysis<LiveIntervals>();
VRM = &getAnalysis<VirtRegMap>();
DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
<< "********** Function: "
<< MF->getName() << '\n');
DEBUG(VRM->dump());
// Add kill flags while we still have virtual registers.
LIS->addKillFlags(VRM);
// Live-in lists on basic blocks are required for physregs.
addMBBLiveIns();
// Rewrite virtual registers.
rewrite();
// Write out new DBG_VALUE instructions.
getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers and release all the transient data.
VRM->clearAllVirt();
MRI->clearVirtRegs();
return true;
}
void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
unsigned PhysReg) const {
assert(!LI.empty());
assert(LI.hasSubRanges());
typedef std::pair<const LiveInterval::SubRange *,
LiveInterval::const_iterator> SubRangeIteratorPair;
SmallVector<SubRangeIteratorPair, 4> SubRanges;
SlotIndex First;
SlotIndex Last;
for (const LiveInterval::SubRange &SR : LI.subranges()) {
SubRanges.push_back(std::make_pair(&SR, SR.begin()));
if (!First.isValid() || SR.segments.front().start < First)
First = SR.segments.front().start;
if (!Last.isValid() || SR.segments.back().end > Last)
Last = SR.segments.back().end;
}
// Check all mbb start positions between First and Last while
// simulatenously advancing an iterator for each subrange.
for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
SlotIndex MBBBegin = MBBI->first;
// Advance all subrange iterators so that their end position is just
// behind MBBBegin (or the iterator is at the end).
LaneBitmask LaneMask = 0;
for (auto &RangeIterPair : SubRanges) {
const LiveInterval::SubRange *SR = RangeIterPair.first;
LiveInterval::const_iterator &SRI = RangeIterPair.second;
while (SRI != SR->end() && SRI->end <= MBBBegin)
++SRI;
if (SRI == SR->end())
continue;
if (SRI->start <= MBBBegin)
LaneMask |= SR->LaneMask;
}
if (LaneMask == 0)
continue;
MachineBasicBlock *MBB = MBBI->second;
MBB->addLiveIn(PhysReg, LaneMask);
}
}
// Compute MBB live-in lists from virtual register live ranges and their
// assignments.
void VirtRegRewriter::addMBBLiveIns() {
for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
if (MRI->reg_nodbg_empty(VirtReg))
continue;
LiveInterval &LI = LIS->getInterval(VirtReg);
if (LI.empty() || LIS->intervalIsInOneMBB(LI))
continue;
// This is a virtual register that is live across basic blocks. Its
// assigned PhysReg must be marked as live-in to those blocks.
unsigned PhysReg = VRM->getPhys(VirtReg);
assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
if (LI.hasSubRanges()) {
addLiveInsForSubRanges(LI, PhysReg);
} else {
// Go over MBB begin positions and see if we have segments covering them.
// The following works because segments and the MBBIndex list are both
// sorted by slot indexes.
SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
for (const auto &Seg : LI) {
I = Indexes->advanceMBBIndex(I, Seg.start);
for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
MachineBasicBlock *MBB = I->second;
MBB->addLiveIn(PhysReg);
}
}
}
}
// Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
// each MBB's LiveIns set before calling addLiveIn on them.
for (MachineBasicBlock &MBB : *MF)
MBB.sortUniqueLiveIns();
}
/// Returns true if the given machine operand \p MO only reads undefined lanes.
/// The function only works for use operands with a subregister set.
bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
// Shortcut if the operand is already marked undef.
if (MO.isUndef())
return true;
unsigned Reg = MO.getReg();
const LiveInterval &LI = LIS->getInterval(Reg);
const MachineInstr &MI = *MO.getParent();
SlotIndex BaseIndex = LIS->getInstructionIndex(&MI);
// This code is only meant to handle reading undefined subregisters which
// we couldn't properly detect before.
assert(LI.liveAt(BaseIndex) &&
"Reads of completely dead register should be marked undef already");
unsigned SubRegIdx = MO.getSubReg();
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
// See if any of the relevant subregister liveranges is defined at this point.
for (const LiveInterval::SubRange &SR : LI.subranges()) {
if ((SR.LaneMask & UseMask) != 0 && SR.liveAt(BaseIndex))
return false;
}
return true;
}
void VirtRegRewriter::rewrite() {
bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
SmallVector<unsigned, 8> SuperDeads;
SmallVector<unsigned, 8> SuperDefs;
SmallVector<unsigned, 8> SuperKills;
for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
MBBI != MBBE; ++MBBI) {
DEBUG(MBBI->print(dbgs(), Indexes));
for (MachineBasicBlock::instr_iterator
MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
MachineInstr *MI = &*MII;
++MII;
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
// Make sure MRI knows about registers clobbered by regmasks.
if (MO.isRegMask())
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
unsigned VirtReg = MO.getReg();
unsigned PhysReg = VRM->getPhys(VirtReg);
assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
"Instruction uses unmapped VirtReg");
assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
// Preserve semantics of sub-register operands.
unsigned SubReg = MO.getSubReg();
if (SubReg != 0) {
if (NoSubRegLiveness) {
// A virtual register kill refers to the whole register, so we may
// have to add <imp-use,kill> operands for the super-register. A
// partial redef always kills and redefines the super-register.
if (MO.readsReg() && (MO.isDef() || MO.isKill()))
SuperKills.push_back(PhysReg);
if (MO.isDef()) {
// Also add implicit defs for the super-register.
if (MO.isDead())
SuperDeads.push_back(PhysReg);
else
SuperDefs.push_back(PhysReg);
}
} else {
if (MO.isUse()) {
if (readsUndefSubreg(MO))
// We need to add an <undef> flag if the subregister is
// completely undefined (and we are not adding super-register
// defs).
MO.setIsUndef(true);
} else if (!MO.isDead()) {
assert(MO.isDef());
}
}
// The <def,undef> flag only makes sense for sub-register defs, and
// we are substituting a full physreg. An <imp-use,kill> operand
// from the SuperKills list will represent the partial read of the
// super-register.
if (MO.isDef())
MO.setIsUndef(false);
// PhysReg operands cannot have subregister indexes.
PhysReg = TRI->getSubReg(PhysReg, SubReg);
assert(PhysReg && "Invalid SubReg for physical register");
MO.setSubReg(0);
}
// Rewrite. Note we could have used MachineOperand::substPhysReg(), but
// we need the inlining here.
MO.setReg(PhysReg);
}
// Add any missing super-register kills after rewriting the whole
// instruction.
while (!SuperKills.empty())
MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
while (!SuperDeads.empty())
MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
while (!SuperDefs.empty())
MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
DEBUG(dbgs() << "> " << *MI);
// Finally, remove any identity copies.
if (MI->isIdentityCopy()) {
++NumIdCopies;
MachineCopyPropagation: Remove the copies instead of using KILL instructions. For some history here see the commit messages of r199797 and r169060. The original intent was to fix cases like: %EAX<def> = COPY %ECX<kill>, %RAX<imp-def> %RCX<def> = COPY %RAX<kill> where simply removing the copies would have RCX undefined as in terms of machine operands only the ECX part of it is defined. The machine verifier would complain about this so 169060 changed such COPY instructions into KILL instructions so some super-register imp-defs would be preserved. In r199797 it was finally decided to always do this regardless of super-register defs. But this is wrong, consider: R1 = COPY R0 ... R0 = COPY R1 getting changed to: R1 = KILL R0 ... R0 = KILL R1 It now looks like R0 dies at the first KILL and won't be alive until the second KILL, while in reality R0 is alive and must not change in this part of the program. As this only happens after register allocation there is not much code still performing liveness queries so the issue was not noticed. In fact I didn't manage to create a testcase for this, without unrelated changes I am working on at the moment. The fix is simple: As of r223896 the MachineVerifier allows reads from partially defined registers, so the whole transforming COPY->KILL thing is not necessary anymore. This patch also changes a similar (but more benign case as the def and src are the same register) case in the VirtRegRewriter. Differential Revision: http://reviews.llvm.org/D10117 llvm-svn: 238588
2015-05-29 20:19:25 +02:00
DEBUG(dbgs() << "Deleting identity copy.\n");
if (Indexes)
Indexes->removeMachineInstrFromMaps(MI);
// It's safe to erase MI because MII has already been incremented.
MI->eraseFromParent();
}
}
}
}