1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/lib/Transforms/Instrumentation/MemorySanitizer.cpp

3332 lines
128 KiB
C++
Raw Normal View History

//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file is a part of MemorySanitizer, a detector of uninitialized
/// reads.
///
/// The algorithm of the tool is similar to Memcheck
/// (http://goo.gl/QKbem). We associate a few shadow bits with every
/// byte of the application memory, poison the shadow of the malloc-ed
/// or alloca-ed memory, load the shadow bits on every memory read,
/// propagate the shadow bits through some of the arithmetic
/// instruction (including MOV), store the shadow bits on every memory
/// write, report a bug on some other instructions (e.g. JMP) if the
/// associated shadow is poisoned.
///
/// But there are differences too. The first and the major one:
/// compiler instrumentation instead of binary instrumentation. This
/// gives us much better register allocation, possible compiler
/// optimizations and a fast start-up. But this brings the major issue
/// as well: msan needs to see all program events, including system
/// calls and reads/writes in system libraries, so we either need to
/// compile *everything* with msan or use a binary translation
/// component (e.g. DynamoRIO) to instrument pre-built libraries.
/// Another difference from Memcheck is that we use 8 shadow bits per
/// byte of application memory and use a direct shadow mapping. This
/// greatly simplifies the instrumentation code and avoids races on
/// shadow updates (Memcheck is single-threaded so races are not a
/// concern there. Memcheck uses 2 shadow bits per byte with a slow
/// path storage that uses 8 bits per byte).
///
/// The default value of shadow is 0, which means "clean" (not poisoned).
///
/// Every module initializer should call __msan_init to ensure that the
/// shadow memory is ready. On error, __msan_warning is called. Since
/// parameters and return values may be passed via registers, we have a
/// specialized thread-local shadow for return values
/// (__msan_retval_tls) and parameters (__msan_param_tls).
///
/// Origin tracking.
///
/// MemorySanitizer can track origins (allocation points) of all uninitialized
/// values. This behavior is controlled with a flag (msan-track-origins) and is
/// disabled by default.
///
/// Origins are 4-byte values created and interpreted by the runtime library.
/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
/// of application memory. Propagation of origins is basically a bunch of
/// "select" instructions that pick the origin of a dirty argument, if an
/// instruction has one.
///
/// Every 4 aligned, consecutive bytes of application memory have one origin
/// value associated with them. If these bytes contain uninitialized data
/// coming from 2 different allocations, the last store wins. Because of this,
/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
/// practice.
///
/// Origins are meaningless for fully initialized values, so MemorySanitizer
/// avoids storing origin to memory when a fully initialized value is stored.
/// This way it avoids needless overwritting origin of the 4-byte region on
/// a short (i.e. 1 byte) clean store, and it is also good for performance.
///
/// Atomic handling.
///
/// Ideally, every atomic store of application value should update the
/// corresponding shadow location in an atomic way. Unfortunately, atomic store
/// of two disjoint locations can not be done without severe slowdown.
///
/// Therefore, we implement an approximation that may err on the safe side.
/// In this implementation, every atomically accessed location in the program
/// may only change from (partially) uninitialized to fully initialized, but
/// not the other way around. We load the shadow _after_ the application load,
/// and we store the shadow _before_ the app store. Also, we always store clean
/// shadow (if the application store is atomic). This way, if the store-load
/// pair constitutes a happens-before arc, shadow store and load are correctly
/// ordered such that the load will get either the value that was stored, or
/// some later value (which is always clean).
///
/// This does not work very well with Compare-And-Swap (CAS) and
/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
/// must store the new shadow before the app operation, and load the shadow
/// after the app operation. Computers don't work this way. Current
/// implementation ignores the load aspect of CAS/RMW, always returning a clean
/// value. It implements the store part as a simple atomic store by storing a
/// clean shadow.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
#define DEBUG_TYPE "msan"
static const unsigned kOriginSize = 4;
static const unsigned kMinOriginAlignment = 4;
static const unsigned kShadowTLSAlignment = 8;
// These constants must be kept in sync with the ones in msan.h.
static const unsigned kParamTLSSize = 800;
static const unsigned kRetvalTLSSize = 800;
// Accesses sizes are powers of two: 1, 2, 4, 8.
static const size_t kNumberOfAccessSizes = 4;
/// \brief Track origins of uninitialized values.
///
/// Adds a section to MemorySanitizer report that points to the allocation
/// (stack or heap) the uninitialized bits came from originally.
static cl::opt<int> ClTrackOrigins("msan-track-origins",
cl::desc("Track origins (allocation sites) of poisoned memory"),
cl::Hidden, cl::init(0));
static cl::opt<bool> ClKeepGoing("msan-keep-going",
cl::desc("keep going after reporting a UMR"),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClPoisonStack("msan-poison-stack",
cl::desc("poison uninitialized stack variables"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
cl::desc("poison uninitialized stack variables with a call"),
cl::Hidden, cl::init(false));
static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
cl::desc("poison uninitialized stack variables with the given pattern"),
cl::Hidden, cl::init(0xff));
static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
cl::desc("poison undef temps"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
cl::desc("exact handling of relational integer ICmp"),
cl::Hidden, cl::init(false));
// This flag controls whether we check the shadow of the address
// operand of load or store. Such bugs are very rare, since load from
// a garbage address typically results in SEGV, but still happen
// (e.g. only lower bits of address are garbage, or the access happens
// early at program startup where malloc-ed memory is more likely to
// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
cl::desc("report accesses through a pointer which has poisoned shadow"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
cl::desc("print out instructions with default strict semantics"),
cl::Hidden, cl::init(false));
static cl::opt<int> ClInstrumentationWithCallThreshold(
"msan-instrumentation-with-call-threshold",
cl::desc(
"If the function being instrumented requires more than "
"this number of checks and origin stores, use callbacks instead of "
"inline checks (-1 means never use callbacks)."),
cl::Hidden, cl::init(3500));
// This is an experiment to enable handling of cases where shadow is a non-zero
// compile-time constant. For some unexplainable reason they were silently
// ignored in the instrumentation.
static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
cl::desc("Insert checks for constant shadow values"),
cl::Hidden, cl::init(false));
// This is off by default because of a bug in gold:
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
static cl::opt<bool> ClWithComdat("msan-with-comdat",
cl::desc("Place MSan constructors in comdat sections"),
cl::Hidden, cl::init(false));
static const char *const kMsanModuleCtorName = "msan.module_ctor";
static const char *const kMsanInitName = "__msan_init";
namespace {
// Memory map parameters used in application-to-shadow address calculation.
// Offset = (Addr & ~AndMask) ^ XorMask
// Shadow = ShadowBase + Offset
// Origin = OriginBase + Offset
struct MemoryMapParams {
uint64_t AndMask;
uint64_t XorMask;
uint64_t ShadowBase;
uint64_t OriginBase;
};
struct PlatformMemoryMapParams {
const MemoryMapParams *bits32;
const MemoryMapParams *bits64;
};
// i386 Linux
static const MemoryMapParams Linux_I386_MemoryMapParams = {
0x000080000000, // AndMask
0, // XorMask (not used)
0, // ShadowBase (not used)
0x000040000000, // OriginBase
};
// x86_64 Linux
static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
#ifdef MSAN_LINUX_X86_64_OLD_MAPPING
0x400000000000, // AndMask
0, // XorMask (not used)
0, // ShadowBase (not used)
0x200000000000, // OriginBase
#else
0, // AndMask (not used)
0x500000000000, // XorMask
0, // ShadowBase (not used)
0x100000000000, // OriginBase
#endif
};
// mips64 Linux
static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
0x004000000000, // AndMask
0, // XorMask (not used)
0, // ShadowBase (not used)
0x002000000000, // OriginBase
};
// ppc64 Linux
static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
0x200000000000, // AndMask
0x100000000000, // XorMask
0x080000000000, // ShadowBase
0x1C0000000000, // OriginBase
};
// aarch64 Linux
static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
[sanitizer] [msan] Unify aarch64 mapping This patch unify the 39-bit and 42-bit mapping for aarch64 to use only one instrumentation algorithm. This removes compiler flag SANITIZER_AARCH64_VMA requirement for MSAN on aarch64. The mapping to use now is for 39 and 42-bits: 0x00000000000ULL-0x01000000000ULL MappingDesc::INVALID 0x01000000000ULL-0x02000000000ULL MappingDesc::SHADOW 0x02000000000ULL-0x03000000000ULL MappingDesc::ORIGIN 0x03000000000ULL-0x04000000000ULL MappingDesc::SHADOW 0x04000000000ULL-0x05000000000ULL MappingDesc::ORIGIN 0x05000000000ULL-0x06000000000ULL MappingDesc::APP 0x06000000000ULL-0x07000000000ULL MappingDesc::INVALID 0x07000000000ULL-0x08000000000ULL MappingDesc::APP And only for 42-bits: 0x08000000000ULL-0x09000000000ULL MappingDesc::INVALID 0x09000000000ULL-0x0A000000000ULL MappingDesc::SHADOW 0x0A000000000ULL-0x0B000000000ULL MappingDesc::ORIGIN 0x0B000000000ULL-0x0F000000000ULL MappingDesc::INVALID 0x0F000000000ULL-0x10000000000ULL MappingDesc::APP 0x10000000000ULL-0x11000000000ULL MappingDesc::INVALID 0x11000000000ULL-0x12000000000ULL MappingDesc::APP 0x12000000000ULL-0x17000000000ULL MappingDesc::INVALID 0x17000000000ULL-0x18000000000ULL MappingDesc::SHADOW 0x18000000000ULL-0x19000000000ULL MappingDesc::ORIGIN 0x19000000000ULL-0x20000000000ULL MappingDesc::INVALID 0x20000000000ULL-0x21000000000ULL MappingDesc::APP 0x21000000000ULL-0x26000000000ULL MappingDesc::INVALID 0x26000000000ULL-0x27000000000ULL MappingDesc::SHADOW 0x27000000000ULL-0x28000000000ULL MappingDesc::ORIGIN 0x28000000000ULL-0x29000000000ULL MappingDesc::SHADOW 0x29000000000ULL-0x2A000000000ULL MappingDesc::ORIGIN 0x2A000000000ULL-0x2B000000000ULL MappingDesc::APP 0x2B000000000ULL-0x2C000000000ULL MappingDesc::INVALID 0x2C000000000ULL-0x2D000000000ULL MappingDesc::SHADOW 0x2D000000000ULL-0x2E000000000ULL MappingDesc::ORIGIN 0x2E000000000ULL-0x2F000000000ULL MappingDesc::APP 0x2F000000000ULL-0x39000000000ULL MappingDesc::INVALID 0x39000000000ULL-0x3A000000000ULL MappingDesc::SHADOW 0x3A000000000ULL-0x3B000000000ULL MappingDesc::ORIGIN 0x3B000000000ULL-0x3C000000000ULL MappingDesc::APP 0x3C000000000ULL-0x3D000000000ULL MappingDesc::INVALID 0x3D000000000ULL-0x3E000000000ULL MappingDesc::SHADOW 0x3E000000000ULL-0x3F000000000ULL MappingDesc::ORIGIN 0x3F000000000ULL-0x40000000000ULL MappingDesc::APP And although complex it provides a better memory utilization that previous one. llvm-svn: 251624
2015-10-29 14:02:30 +01:00
0, // AndMask (not used)
0x06000000000, // XorMask
0, // ShadowBase (not used)
0x01000000000, // OriginBase
};
// i386 FreeBSD
static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
0x000180000000, // AndMask
0x000040000000, // XorMask
0x000020000000, // ShadowBase
0x000700000000, // OriginBase
};
// x86_64 FreeBSD
static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
0xc00000000000, // AndMask
0x200000000000, // XorMask
0x100000000000, // ShadowBase
0x380000000000, // OriginBase
};
static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
&Linux_I386_MemoryMapParams,
&Linux_X86_64_MemoryMapParams,
};
static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
nullptr,
&Linux_MIPS64_MemoryMapParams,
};
static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
nullptr,
&Linux_PowerPC64_MemoryMapParams,
};
static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
nullptr,
&Linux_AArch64_MemoryMapParams,
};
static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
&FreeBSD_I386_MemoryMapParams,
&FreeBSD_X86_64_MemoryMapParams,
};
/// \brief An instrumentation pass implementing detection of uninitialized
/// reads.
///
/// MemorySanitizer: instrument the code in module to find
/// uninitialized reads.
class MemorySanitizer : public FunctionPass {
public:
MemorySanitizer(int TrackOrigins = 0)
: FunctionPass(ID),
TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
WarningFn(nullptr) {}
const char *getPassName() const override { return "MemorySanitizer"; }
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
static char ID; // Pass identification, replacement for typeid.
private:
void initializeCallbacks(Module &M);
/// \brief Track origins (allocation points) of uninitialized values.
int TrackOrigins;
LLVMContext *C;
Type *IntptrTy;
Type *OriginTy;
/// \brief Thread-local shadow storage for function parameters.
GlobalVariable *ParamTLS;
/// \brief Thread-local origin storage for function parameters.
GlobalVariable *ParamOriginTLS;
/// \brief Thread-local shadow storage for function return value.
GlobalVariable *RetvalTLS;
/// \brief Thread-local origin storage for function return value.
GlobalVariable *RetvalOriginTLS;
/// \brief Thread-local shadow storage for in-register va_arg function
/// parameters (x86_64-specific).
GlobalVariable *VAArgTLS;
/// \brief Thread-local shadow storage for va_arg overflow area
/// (x86_64-specific).
GlobalVariable *VAArgOverflowSizeTLS;
/// \brief Thread-local space used to pass origin value to the UMR reporting
/// function.
GlobalVariable *OriginTLS;
/// \brief The run-time callback to print a warning.
Value *WarningFn;
// These arrays are indexed by log2(AccessSize).
Value *MaybeWarningFn[kNumberOfAccessSizes];
Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
/// \brief Run-time helper that generates a new origin value for a stack
/// allocation.
Value *MsanSetAllocaOrigin4Fn;
/// \brief Run-time helper that poisons stack on function entry.
Value *MsanPoisonStackFn;
/// \brief Run-time helper that records a store (or any event) of an
/// uninitialized value and returns an updated origin id encoding this info.
Value *MsanChainOriginFn;
/// \brief MSan runtime replacements for memmove, memcpy and memset.
Value *MemmoveFn, *MemcpyFn, *MemsetFn;
/// \brief Memory map parameters used in application-to-shadow calculation.
const MemoryMapParams *MapParams;
MDNode *ColdCallWeights;
/// \brief Branch weights for origin store.
MDNode *OriginStoreWeights;
/// \brief An empty volatile inline asm that prevents callback merge.
InlineAsm *EmptyAsm;
Function *MsanCtorFunction;
friend struct MemorySanitizerVisitor;
friend struct VarArgAMD64Helper;
friend struct VarArgMIPS64Helper;
friend struct VarArgAArch64Helper;
};
} // anonymous namespace
char MemorySanitizer::ID = 0;
INITIALIZE_PASS(MemorySanitizer, "msan",
"MemorySanitizer: detects uninitialized reads.",
false, false)
FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
return new MemorySanitizer(TrackOrigins);
}
/// \brief Create a non-const global initialized with the given string.
///
/// Creates a writable global for Str so that we can pass it to the
/// run-time lib. Runtime uses first 4 bytes of the string to store the
/// frame ID, so the string needs to be mutable.
static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
StringRef Str) {
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
GlobalValue::PrivateLinkage, StrConst, "");
}
/// \brief Insert extern declaration of runtime-provided functions and globals.
void MemorySanitizer::initializeCallbacks(Module &M) {
// Only do this once.
if (WarningFn)
return;
IRBuilder<> IRB(*C);
// Create the callback.
// FIXME: this function should have "Cold" calling conv,
// which is not yet implemented.
StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
: "__msan_warning_noreturn";
WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
unsigned AccessSize = 1 << AccessSizeIndex;
std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
IRB.getInt32Ty(), nullptr);
FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
}
MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
"__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
IRB.getInt8PtrTy(), IntptrTy, nullptr);
MsanPoisonStackFn =
M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
IRB.getInt8PtrTy(), IntptrTy, nullptr);
MsanChainOriginFn = M.getOrInsertFunction(
"__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
MemmoveFn = M.getOrInsertFunction(
"__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IRB.getInt8PtrTy(), IntptrTy, nullptr);
MemcpyFn = M.getOrInsertFunction(
"__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
IntptrTy, nullptr);
MemsetFn = M.getOrInsertFunction(
"__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
IntptrTy, nullptr);
// Create globals.
RetvalTLS = new GlobalVariable(
M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
RetvalOriginTLS = new GlobalVariable(
M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
"__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
ParamTLS = new GlobalVariable(
M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
ParamOriginTLS = new GlobalVariable(
M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
nullptr, GlobalVariable::InitialExecTLSModel);
VAArgTLS = new GlobalVariable(
M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
VAArgOverflowSizeTLS = new GlobalVariable(
M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
"__msan_va_arg_overflow_size_tls", nullptr,
GlobalVariable::InitialExecTLSModel);
OriginTLS = new GlobalVariable(
M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
"__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
// We insert an empty inline asm after __msan_report* to avoid callback merge.
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
/*hasSideEffects=*/true);
}
/// \brief Module-level initialization.
///
/// inserts a call to __msan_init to the module's constructor list.
bool MemorySanitizer::doInitialization(Module &M) {
auto &DL = M.getDataLayout();
Triple TargetTriple(M.getTargetTriple());
switch (TargetTriple.getOS()) {
case Triple::FreeBSD:
switch (TargetTriple.getArch()) {
case Triple::x86_64:
MapParams = FreeBSD_X86_MemoryMapParams.bits64;
break;
case Triple::x86:
MapParams = FreeBSD_X86_MemoryMapParams.bits32;
break;
default:
report_fatal_error("unsupported architecture");
}
break;
case Triple::Linux:
switch (TargetTriple.getArch()) {
case Triple::x86_64:
MapParams = Linux_X86_MemoryMapParams.bits64;
break;
case Triple::x86:
MapParams = Linux_X86_MemoryMapParams.bits32;
break;
case Triple::mips64:
case Triple::mips64el:
MapParams = Linux_MIPS_MemoryMapParams.bits64;
break;
case Triple::ppc64:
case Triple::ppc64le:
MapParams = Linux_PowerPC_MemoryMapParams.bits64;
break;
case Triple::aarch64:
case Triple::aarch64_be:
MapParams = Linux_ARM_MemoryMapParams.bits64;
break;
default:
report_fatal_error("unsupported architecture");
}
break;
default:
report_fatal_error("unsupported operating system");
}
C = &(M.getContext());
IRBuilder<> IRB(*C);
IntptrTy = IRB.getIntPtrTy(DL);
OriginTy = IRB.getInt32Ty();
ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
std::tie(MsanCtorFunction, std::ignore) =
createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
/*InitArgTypes=*/{},
/*InitArgs=*/{});
if (ClWithComdat) {
Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
MsanCtorFunction->setComdat(MsanCtorComdat);
appendToGlobalCtors(M, MsanCtorFunction, 0, MsanCtorFunction);
} else {
appendToGlobalCtors(M, MsanCtorFunction, 0);
}
if (TrackOrigins)
new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
IRB.getInt32(TrackOrigins), "__msan_track_origins");
if (ClKeepGoing)
new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
IRB.getInt32(ClKeepGoing), "__msan_keep_going");
return true;
}
namespace {
/// \brief A helper class that handles instrumentation of VarArg
/// functions on a particular platform.
///
/// Implementations are expected to insert the instrumentation
/// necessary to propagate argument shadow through VarArg function
/// calls. Visit* methods are called during an InstVisitor pass over
/// the function, and should avoid creating new basic blocks. A new
/// instance of this class is created for each instrumented function.
struct VarArgHelper {
/// \brief Visit a CallSite.
virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
/// \brief Visit a va_start call.
virtual void visitVAStartInst(VAStartInst &I) = 0;
/// \brief Visit a va_copy call.
virtual void visitVACopyInst(VACopyInst &I) = 0;
/// \brief Finalize function instrumentation.
///
/// This method is called after visiting all interesting (see above)
/// instructions in a function.
virtual void finalizeInstrumentation() = 0;
virtual ~VarArgHelper() {}
};
struct MemorySanitizerVisitor;
VarArgHelper*
CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
MemorySanitizerVisitor &Visitor);
unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
if (TypeSize <= 8) return 0;
return Log2_32_Ceil(TypeSize / 8);
}
/// This class does all the work for a given function. Store and Load
/// instructions store and load corresponding shadow and origin
/// values. Most instructions propagate shadow from arguments to their
/// return values. Certain instructions (most importantly, BranchInst)
/// test their argument shadow and print reports (with a runtime call) if it's
/// non-zero.
struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
Function &F;
MemorySanitizer &MS;
SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
ValueMap<Value*, Value*> ShadowMap, OriginMap;
std::unique_ptr<VarArgHelper> VAHelper;
// The following flags disable parts of MSan instrumentation based on
// blacklist contents and command-line options.
bool InsertChecks;
bool PropagateShadow;
bool PoisonStack;
bool PoisonUndef;
bool CheckReturnValue;
struct ShadowOriginAndInsertPoint {
Value *Shadow;
Value *Origin;
Instruction *OrigIns;
ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
: Shadow(S), Origin(O), OrigIns(I) { }
};
SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
SmallVector<Instruction*, 16> StoreList;
MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
: F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
InsertChecks = SanitizeFunction;
PropagateShadow = SanitizeFunction;
PoisonStack = SanitizeFunction && ClPoisonStack;
PoisonUndef = SanitizeFunction && ClPoisonUndef;
// FIXME: Consider using SpecialCaseList to specify a list of functions that
// must always return fully initialized values. For now, we hardcode "main".
CheckReturnValue = SanitizeFunction && (F.getName() == "main");
DEBUG(if (!InsertChecks)
dbgs() << "MemorySanitizer is not inserting checks into '"
<< F.getName() << "'\n");
}
Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
if (MS.TrackOrigins <= 1) return V;
return IRB.CreateCall(MS.MsanChainOriginFn, V);
}
Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
const DataLayout &DL = F.getParent()->getDataLayout();
unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
if (IntptrSize == kOriginSize) return Origin;
assert(IntptrSize == kOriginSize * 2);
Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
}
/// \brief Fill memory range with the given origin value.
void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
unsigned Size, unsigned Alignment) {
const DataLayout &DL = F.getParent()->getDataLayout();
unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
assert(IntptrAlignment >= kMinOriginAlignment);
assert(IntptrSize >= kOriginSize);
unsigned Ofs = 0;
unsigned CurrentAlignment = Alignment;
if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
Value *IntptrOrigin = originToIntptr(IRB, Origin);
Value *IntptrOriginPtr =
IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
for (unsigned i = 0; i < Size / IntptrSize; ++i) {
Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
: IntptrOriginPtr;
IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
Ofs += IntptrSize / kOriginSize;
CurrentAlignment = IntptrAlignment;
}
}
for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
Value *GEP =
i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
CurrentAlignment = kMinOriginAlignment;
}
}
void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
unsigned Alignment, bool AsCall) {
const DataLayout &DL = F.getParent()->getDataLayout();
unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
if (Shadow->getType()->isAggregateType()) {
paintOrigin(IRB, updateOrigin(Origin, IRB),
getOriginPtr(Addr, IRB, Alignment), StoreSize,
OriginAlignment);
} else {
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
if (ConstantShadow) {
if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
paintOrigin(IRB, updateOrigin(Origin, IRB),
getOriginPtr(Addr, IRB, Alignment), StoreSize,
OriginAlignment);
return;
}
unsigned TypeSizeInBits =
DL.getTypeSizeInBits(ConvertedShadow->getType());
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
if (AsCall && SizeIndex < kNumberOfAccessSizes) {
Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
Value *ConvertedShadow2 = IRB.CreateZExt(
ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
IRB.CreateCall(Fn, {ConvertedShadow2,
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
Origin});
} else {
Value *Cmp = IRB.CreateICmpNE(
ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
IRBuilder<> IRBNew(CheckTerm);
paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
OriginAlignment);
}
}
}
void materializeStores(bool InstrumentWithCalls) {
for (auto Inst : StoreList) {
StoreInst &SI = *dyn_cast<StoreInst>(Inst);
IRBuilder<> IRB(&SI);
Value *Val = SI.getValueOperand();
Value *Addr = SI.getPointerOperand();
Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
StoreInst *NewSI =
IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
(void)NewSI;
if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
if (MS.TrackOrigins && !SI.isAtomic())
storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
InstrumentWithCalls);
}
}
void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
bool AsCall) {
IRBuilder<> IRB(OrigIns);
DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
if (ConstantShadow) {
if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
if (MS.TrackOrigins) {
IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
MS.OriginTLS);
}
IRB.CreateCall(MS.WarningFn, {});
IRB.CreateCall(MS.EmptyAsm, {});
// FIXME: Insert UnreachableInst if !ClKeepGoing?
// This may invalidate some of the following checks and needs to be done
// at the very end.
}
return;
}
const DataLayout &DL = OrigIns->getModule()->getDataLayout();
unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
if (AsCall && SizeIndex < kNumberOfAccessSizes) {
Value *Fn = MS.MaybeWarningFn[SizeIndex];
Value *ConvertedShadow2 =
IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
? Origin
: (Value *)IRB.getInt32(0)});
} else {
Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
getCleanShadow(ConvertedShadow), "_mscmp");
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Cmp, OrigIns,
/* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
IRB.SetInsertPoint(CheckTerm);
if (MS.TrackOrigins) {
IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
MS.OriginTLS);
}
IRB.CreateCall(MS.WarningFn, {});
IRB.CreateCall(MS.EmptyAsm, {});
DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
}
}
void materializeChecks(bool InstrumentWithCalls) {
for (const auto &ShadowData : InstrumentationList) {
Instruction *OrigIns = ShadowData.OrigIns;
Value *Shadow = ShadowData.Shadow;
Value *Origin = ShadowData.Origin;
materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
}
DEBUG(dbgs() << "DONE:\n" << F);
}
/// \brief Add MemorySanitizer instrumentation to a function.
bool runOnFunction() {
MS.initializeCallbacks(*F.getParent());
// In the presence of unreachable blocks, we may see Phi nodes with
// incoming nodes from such blocks. Since InstVisitor skips unreachable
// blocks, such nodes will not have any shadow value associated with them.
// It's easier to remove unreachable blocks than deal with missing shadow.
removeUnreachableBlocks(F);
// Iterate all BBs in depth-first order and create shadow instructions
// for all instructions (where applicable).
// For PHI nodes we create dummy shadow PHIs which will be finalized later.
for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
visit(*BB);
// Finalize PHI nodes.
for (PHINode *PN : ShadowPHINodes) {
PHINode *PNS = cast<PHINode>(getShadow(PN));
PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
size_t NumValues = PN->getNumIncomingValues();
for (size_t v = 0; v < NumValues; v++) {
PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
}
}
VAHelper->finalizeInstrumentation();
bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
InstrumentationList.size() + StoreList.size() >
(unsigned)ClInstrumentationWithCallThreshold;
// Delayed instrumentation of StoreInst.
// This may add new checks to be inserted later.
materializeStores(InstrumentWithCalls);
// Insert shadow value checks.
materializeChecks(InstrumentWithCalls);
return true;
}
/// \brief Compute the shadow type that corresponds to a given Value.
Type *getShadowTy(Value *V) {
return getShadowTy(V->getType());
}
/// \brief Compute the shadow type that corresponds to a given Type.
Type *getShadowTy(Type *OrigTy) {
if (!OrigTy->isSized()) {
return nullptr;
}
// For integer type, shadow is the same as the original type.
// This may return weird-sized types like i1.
if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
return IT;
const DataLayout &DL = F.getParent()->getDataLayout();
if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
return VectorType::get(IntegerType::get(*MS.C, EltSize),
VT->getNumElements());
}
if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
return ArrayType::get(getShadowTy(AT->getElementType()),
AT->getNumElements());
}
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
SmallVector<Type*, 4> Elements;
for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
Elements.push_back(getShadowTy(ST->getElementType(i)));
StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
return Res;
}
uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
return IntegerType::get(*MS.C, TypeSize);
}
/// \brief Flatten a vector type.
Type *getShadowTyNoVec(Type *ty) {
if (VectorType *vt = dyn_cast<VectorType>(ty))
return IntegerType::get(*MS.C, vt->getBitWidth());
return ty;
}
/// \brief Convert a shadow value to it's flattened variant.
Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
Type *Ty = V->getType();
Type *NoVecTy = getShadowTyNoVec(Ty);
if (Ty == NoVecTy) return V;
return IRB.CreateBitCast(V, NoVecTy);
}
/// \brief Compute the integer shadow offset that corresponds to a given
/// application address.
///
/// Offset = (Addr & ~AndMask) ^ XorMask
Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
uint64_t AndMask = MS.MapParams->AndMask;
if (AndMask)
OffsetLong =
IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
uint64_t XorMask = MS.MapParams->XorMask;
if (XorMask)
OffsetLong =
IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
return OffsetLong;
}
/// \brief Compute the shadow address that corresponds to a given application
/// address.
///
/// Shadow = ShadowBase + Offset
Value *getShadowPtr(Value *Addr, Type *ShadowTy,
IRBuilder<> &IRB) {
Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
uint64_t ShadowBase = MS.MapParams->ShadowBase;
if (ShadowBase != 0)
ShadowLong =
IRB.CreateAdd(ShadowLong,
ConstantInt::get(MS.IntptrTy, ShadowBase));
return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
}
/// \brief Compute the origin address that corresponds to a given application
/// address.
///
/// OriginAddr = (OriginBase + Offset) & ~3ULL
Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
Value *OriginLong = getShadowPtrOffset(Addr, IRB);
uint64_t OriginBase = MS.MapParams->OriginBase;
if (OriginBase != 0)
OriginLong =
IRB.CreateAdd(OriginLong,
ConstantInt::get(MS.IntptrTy, OriginBase));
if (Alignment < kMinOriginAlignment) {
uint64_t Mask = kMinOriginAlignment - 1;
OriginLong = IRB.CreateAnd(OriginLong,
ConstantInt::get(MS.IntptrTy, ~Mask));
}
return IRB.CreateIntToPtr(OriginLong,
PointerType::get(IRB.getInt32Ty(), 0));
}
/// \brief Compute the shadow address for a given function argument.
///
/// Shadow = ParamTLS+ArgOffset.
Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
int ArgOffset) {
Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
"_msarg");
}
/// \brief Compute the origin address for a given function argument.
Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
int ArgOffset) {
if (!MS.TrackOrigins) return nullptr;
Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
"_msarg_o");
}
/// \brief Compute the shadow address for a retval.
Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
"_msret");
}
/// \brief Compute the origin address for a retval.
Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
// We keep a single origin for the entire retval. Might be too optimistic.
return MS.RetvalOriginTLS;
}
/// \brief Set SV to be the shadow value for V.
void setShadow(Value *V, Value *SV) {
assert(!ShadowMap.count(V) && "Values may only have one shadow");
ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
}
/// \brief Set Origin to be the origin value for V.
void setOrigin(Value *V, Value *Origin) {
if (!MS.TrackOrigins) return;
assert(!OriginMap.count(V) && "Values may only have one origin");
DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
OriginMap[V] = Origin;
}
/// \brief Create a clean shadow value for a given value.
///
/// Clean shadow (all zeroes) means all bits of the value are defined
/// (initialized).
Constant *getCleanShadow(Value *V) {
Type *ShadowTy = getShadowTy(V);
if (!ShadowTy)
return nullptr;
return Constant::getNullValue(ShadowTy);
}
/// \brief Create a dirty shadow of a given shadow type.
Constant *getPoisonedShadow(Type *ShadowTy) {
assert(ShadowTy);
if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
return Constant::getAllOnesValue(ShadowTy);
if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
SmallVector<Constant *, 4> Vals(AT->getNumElements(),
getPoisonedShadow(AT->getElementType()));
return ConstantArray::get(AT, Vals);
}
if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
SmallVector<Constant *, 4> Vals;
for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
return ConstantStruct::get(ST, Vals);
}
llvm_unreachable("Unexpected shadow type");
}
/// \brief Create a dirty shadow for a given value.
Constant *getPoisonedShadow(Value *V) {
Type *ShadowTy = getShadowTy(V);
if (!ShadowTy)
return nullptr;
return getPoisonedShadow(ShadowTy);
}
/// \brief Create a clean (zero) origin.
Value *getCleanOrigin() {
return Constant::getNullValue(MS.OriginTy);
}
/// \brief Get the shadow value for a given Value.
///
/// This function either returns the value set earlier with setShadow,
/// or extracts if from ParamTLS (for function arguments).
Value *getShadow(Value *V) {
if (!PropagateShadow) return getCleanShadow(V);
if (Instruction *I = dyn_cast<Instruction>(V)) {
// For instructions the shadow is already stored in the map.
Value *Shadow = ShadowMap[V];
if (!Shadow) {
DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
(void)I;
assert(Shadow && "No shadow for a value");
}
return Shadow;
}
if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
(void)U;
return AllOnes;
}
if (Argument *A = dyn_cast<Argument>(V)) {
// For arguments we compute the shadow on demand and store it in the map.
Value **ShadowPtr = &ShadowMap[V];
if (*ShadowPtr)
return *ShadowPtr;
Function *F = A->getParent();
IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
unsigned ArgOffset = 0;
const DataLayout &DL = F->getParent()->getDataLayout();
for (auto &FArg : F->args()) {
if (!FArg.getType()->isSized()) {
DEBUG(dbgs() << "Arg is not sized\n");
continue;
}
unsigned Size =
FArg.hasByValAttr()
? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
: DL.getTypeAllocSize(FArg.getType());
if (A == &FArg) {
bool Overflow = ArgOffset + Size > kParamTLSSize;
Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
if (FArg.hasByValAttr()) {
// ByVal pointer itself has clean shadow. We copy the actual
// argument shadow to the underlying memory.
// Figure out maximal valid memcpy alignment.
unsigned ArgAlign = FArg.getParamAlignment();
if (ArgAlign == 0) {
Type *EltType = A->getType()->getPointerElementType();
ArgAlign = DL.getABITypeAlignment(EltType);
}
if (Overflow) {
// ParamTLS overflow.
EntryIRB.CreateMemSet(
getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
} else {
unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Value *Cpy = EntryIRB.CreateMemCpy(
getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
CopyAlign);
DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
(void)Cpy;
}
*ShadowPtr = getCleanShadow(V);
} else {
if (Overflow) {
// ParamTLS overflow.
*ShadowPtr = getCleanShadow(V);
} else {
*ShadowPtr =
EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
}
}
DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
**ShadowPtr << "\n");
if (MS.TrackOrigins && !Overflow) {
Value *OriginPtr =
getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
} else {
setOrigin(A, getCleanOrigin());
}
}
ArgOffset += alignTo(Size, kShadowTLSAlignment);
}
assert(*ShadowPtr && "Could not find shadow for an argument");
return *ShadowPtr;
}
// For everything else the shadow is zero.
return getCleanShadow(V);
}
/// \brief Get the shadow for i-th argument of the instruction I.
Value *getShadow(Instruction *I, int i) {
return getShadow(I->getOperand(i));
}
/// \brief Get the origin for a value.
Value *getOrigin(Value *V) {
if (!MS.TrackOrigins) return nullptr;
if (!PropagateShadow) return getCleanOrigin();
if (isa<Constant>(V)) return getCleanOrigin();
assert((isa<Instruction>(V) || isa<Argument>(V)) &&
"Unexpected value type in getOrigin()");
Value *Origin = OriginMap[V];
assert(Origin && "Missing origin");
return Origin;
}
/// \brief Get the origin for i-th argument of the instruction I.
Value *getOrigin(Instruction *I, int i) {
return getOrigin(I->getOperand(i));
}
/// \brief Remember the place where a shadow check should be inserted.
///
/// This location will be later instrumented with a check that will print a
/// UMR warning in runtime if the shadow value is not 0.
void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
assert(Shadow);
if (!InsertChecks) return;
#ifndef NDEBUG
Type *ShadowTy = Shadow->getType();
assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
"Can only insert checks for integer and vector shadow types");
#endif
InstrumentationList.push_back(
ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
}
/// \brief Remember the place where a shadow check should be inserted.
///
/// This location will be later instrumented with a check that will print a
/// UMR warning in runtime if the value is not fully defined.
void insertShadowCheck(Value *Val, Instruction *OrigIns) {
assert(Val);
Value *Shadow, *Origin;
if (ClCheckConstantShadow) {
Shadow = getShadow(Val);
if (!Shadow) return;
Origin = getOrigin(Val);
} else {
Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
if (!Shadow) return;
Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
}
insertShadowCheck(Shadow, Origin, OrigIns);
}
AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
switch (a) {
case AtomicOrdering::NotAtomic:
return AtomicOrdering::NotAtomic;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::Release:
return AtomicOrdering::Release;
case AtomicOrdering::Acquire:
case AtomicOrdering::AcquireRelease:
return AtomicOrdering::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("Unknown ordering");
}
AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
switch (a) {
case AtomicOrdering::NotAtomic:
return AtomicOrdering::NotAtomic;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
return AtomicOrdering::Acquire;
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
return AtomicOrdering::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("Unknown ordering");
}
// ------------------- Visitors.
/// \brief Instrument LoadInst
///
/// Loads the corresponding shadow and (optionally) origin.
/// Optionally, checks that the load address is fully defined.
void visitLoadInst(LoadInst &I) {
assert(I.getType()->isSized() && "Load type must have size");
IRBuilder<> IRB(I.getNextNode());
Type *ShadowTy = getShadowTy(&I);
Value *Addr = I.getPointerOperand();
if (PropagateShadow && !I.getMetadata("nosanitize")) {
Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
setShadow(&I,
IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
} else {
setShadow(&I, getCleanShadow(&I));
}
if (ClCheckAccessAddress)
insertShadowCheck(I.getPointerOperand(), &I);
if (I.isAtomic())
I.setOrdering(addAcquireOrdering(I.getOrdering()));
if (MS.TrackOrigins) {
if (PropagateShadow) {
unsigned Alignment = I.getAlignment();
unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
OriginAlignment));
} else {
setOrigin(&I, getCleanOrigin());
}
}
}
/// \brief Instrument StoreInst
///
/// Stores the corresponding shadow and (optionally) origin.
/// Optionally, checks that the store address is fully defined.
void visitStoreInst(StoreInst &I) {
StoreList.push_back(&I);
}
void handleCASOrRMW(Instruction &I) {
assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
IRBuilder<> IRB(&I);
Value *Addr = I.getOperand(0);
Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
if (ClCheckAccessAddress)
insertShadowCheck(Addr, &I);
// Only test the conditional argument of cmpxchg instruction.
// The other argument can potentially be uninitialized, but we can not
// detect this situation reliably without possible false positives.
if (isa<AtomicCmpXchgInst>(I))
insertShadowCheck(I.getOperand(1), &I);
IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
}
void visitAtomicRMWInst(AtomicRMWInst &I) {
handleCASOrRMW(I);
I.setOrdering(addReleaseOrdering(I.getOrdering()));
}
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
handleCASOrRMW(I);
I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
}
// Vector manipulation.
void visitExtractElementInst(ExtractElementInst &I) {
insertShadowCheck(I.getOperand(1), &I);
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
"_msprop"));
setOrigin(&I, getOrigin(&I, 0));
}
void visitInsertElementInst(InsertElementInst &I) {
insertShadowCheck(I.getOperand(2), &I);
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
I.getOperand(2), "_msprop"));
setOriginForNaryOp(I);
}
void visitShuffleVectorInst(ShuffleVectorInst &I) {
insertShadowCheck(I.getOperand(2), &I);
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
I.getOperand(2), "_msprop"));
setOriginForNaryOp(I);
}
// Casts.
void visitSExtInst(SExtInst &I) {
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
setOrigin(&I, getOrigin(&I, 0));
}
void visitZExtInst(ZExtInst &I) {
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
setOrigin(&I, getOrigin(&I, 0));
}
void visitTruncInst(TruncInst &I) {
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
setOrigin(&I, getOrigin(&I, 0));
}
void visitBitCastInst(BitCastInst &I) {
// Special case: if this is the bitcast (there is exactly 1 allowed) between
// a musttail call and a ret, don't instrument. New instructions are not
// allowed after a musttail call.
if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
if (CI->isMustTailCall())
return;
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
setOrigin(&I, getOrigin(&I, 0));
}
void visitPtrToIntInst(PtrToIntInst &I) {
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
"_msprop_ptrtoint"));
setOrigin(&I, getOrigin(&I, 0));
}
void visitIntToPtrInst(IntToPtrInst &I) {
IRBuilder<> IRB(&I);
setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
"_msprop_inttoptr"));
setOrigin(&I, getOrigin(&I, 0));
}
void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
/// \brief Propagate shadow for bitwise AND.
///
/// This code is exact, i.e. if, for example, a bit in the left argument
/// is defined and 0, then neither the value not definedness of the
/// corresponding bit in B don't affect the resulting shadow.
void visitAnd(BinaryOperator &I) {
IRBuilder<> IRB(&I);
// "And" of 0 and a poisoned value results in unpoisoned value.
// 1&1 => 1; 0&1 => 0; p&1 => p;
// 1&0 => 0; 0&0 => 0; p&0 => 0;
// 1&p => p; 0&p => 0; p&p => p;
// S = (S1 & S2) | (V1 & S2) | (S1 & V2)
Value *S1 = getShadow(&I, 0);
Value *S2 = getShadow(&I, 1);
Value *V1 = I.getOperand(0);
Value *V2 = I.getOperand(1);
if (V1->getType() != S1->getType()) {
V1 = IRB.CreateIntCast(V1, S1->getType(), false);
V2 = IRB.CreateIntCast(V2, S2->getType(), false);
}
Value *S1S2 = IRB.CreateAnd(S1, S2);
Value *V1S2 = IRB.CreateAnd(V1, S2);
Value *S1V2 = IRB.CreateAnd(S1, V2);
setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
setOriginForNaryOp(I);
}
void visitOr(BinaryOperator &I) {
IRBuilder<> IRB(&I);
// "Or" of 1 and a poisoned value results in unpoisoned value.
// 1|1 => 1; 0|1 => 1; p|1 => 1;
// 1|0 => 1; 0|0 => 0; p|0 => p;
// 1|p => 1; 0|p => p; p|p => p;
// S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
Value *S1 = getShadow(&I, 0);
Value *S2 = getShadow(&I, 1);
Value *V1 = IRB.CreateNot(I.getOperand(0));
Value *V2 = IRB.CreateNot(I.getOperand(1));
if (V1->getType() != S1->getType()) {
V1 = IRB.CreateIntCast(V1, S1->getType(), false);
V2 = IRB.CreateIntCast(V2, S2->getType(), false);
}
Value *S1S2 = IRB.CreateAnd(S1, S2);
Value *V1S2 = IRB.CreateAnd(V1, S2);
Value *S1V2 = IRB.CreateAnd(S1, V2);
setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
setOriginForNaryOp(I);
}
/// \brief Default propagation of shadow and/or origin.
///
/// This class implements the general case of shadow propagation, used in all
/// cases where we don't know and/or don't care about what the operation
/// actually does. It converts all input shadow values to a common type
/// (extending or truncating as necessary), and bitwise OR's them.
///
/// This is much cheaper than inserting checks (i.e. requiring inputs to be
/// fully initialized), and less prone to false positives.
///
/// This class also implements the general case of origin propagation. For a
/// Nary operation, result origin is set to the origin of an argument that is
/// not entirely initialized. If there is more than one such arguments, the
/// rightmost of them is picked. It does not matter which one is picked if all
/// arguments are initialized.
template <bool CombineShadow>
class Combiner {
Value *Shadow;
Value *Origin;
IRBuilder<> &IRB;
MemorySanitizerVisitor *MSV;
public:
Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
/// \brief Add a pair of shadow and origin values to the mix.
Combiner &Add(Value *OpShadow, Value *OpOrigin) {
if (CombineShadow) {
assert(OpShadow);
if (!Shadow)
Shadow = OpShadow;
else {
OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
}
}
if (MSV->MS.TrackOrigins) {
assert(OpOrigin);
if (!Origin) {
Origin = OpOrigin;
} else {
Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
// No point in adding something that might result in 0 origin value.
if (!ConstOrigin || !ConstOrigin->isNullValue()) {
Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
Value *Cond =
IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
}
}
}
return *this;
}
/// \brief Add an application value to the mix.
Combiner &Add(Value *V) {
Value *OpShadow = MSV->getShadow(V);
Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
return Add(OpShadow, OpOrigin);
}
/// \brief Set the current combined values as the given instruction's shadow
/// and origin.
void Done(Instruction *I) {
if (CombineShadow) {
assert(Shadow);
Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
MSV->setShadow(I, Shadow);
}
if (MSV->MS.TrackOrigins) {
assert(Origin);
MSV->setOrigin(I, Origin);
}
}
};
typedef Combiner<true> ShadowAndOriginCombiner;
typedef Combiner<false> OriginCombiner;
/// \brief Propagate origin for arbitrary operation.
void setOriginForNaryOp(Instruction &I) {
if (!MS.TrackOrigins) return;
IRBuilder<> IRB(&I);
OriginCombiner OC(this, IRB);
for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
OC.Add(OI->get());
OC.Done(&I);
}
size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
"Vector of pointers is not a valid shadow type");
return Ty->isVectorTy() ?
Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
Ty->getPrimitiveSizeInBits();
}
/// \brief Cast between two shadow types, extending or truncating as
/// necessary.
Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
bool Signed = false) {
Type *srcTy = V->getType();
if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
return IRB.CreateIntCast(V, dstTy, Signed);
if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
return IRB.CreateIntCast(V, dstTy, Signed);
size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
Value *V2 =
IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
return IRB.CreateBitCast(V2, dstTy);
// TODO: handle struct types.
}
/// \brief Cast an application value to the type of its own shadow.
Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
Type *ShadowTy = getShadowTy(V);
if (V->getType() == ShadowTy)
return V;
if (V->getType()->isPtrOrPtrVectorTy())
return IRB.CreatePtrToInt(V, ShadowTy);
else
return IRB.CreateBitCast(V, ShadowTy);
}
/// \brief Propagate shadow for arbitrary operation.
void handleShadowOr(Instruction &I) {
IRBuilder<> IRB(&I);
ShadowAndOriginCombiner SC(this, IRB);
for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
SC.Add(OI->get());
SC.Done(&I);
}
// \brief Handle multiplication by constant.
//
// Handle a special case of multiplication by constant that may have one or
// more zeros in the lower bits. This makes corresponding number of lower bits
// of the result zero as well. We model it by shifting the other operand
// shadow left by the required number of bits. Effectively, we transform
// (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
// We use multiplication by 2**N instead of shift to cover the case of
// multiplication by 0, which may occur in some elements of a vector operand.
void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
Value *OtherArg) {
Constant *ShadowMul;
Type *Ty = ConstArg->getType();
if (Ty->isVectorTy()) {
unsigned NumElements = Ty->getVectorNumElements();
Type *EltTy = Ty->getSequentialElementType();
SmallVector<Constant *, 16> Elements;
for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
if (ConstantInt *Elt =
dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
APInt V = Elt->getValue();
APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
Elements.push_back(ConstantInt::get(EltTy, V2));
} else {
Elements.push_back(ConstantInt::get(EltTy, 1));
}
}
ShadowMul = ConstantVector::get(Elements);
} else {
if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
APInt V = Elt->getValue();
APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
ShadowMul = ConstantInt::get(Ty, V2);
} else {
ShadowMul = ConstantInt::get(Ty, 1);
}
}
IRBuilder<> IRB(&I);
setShadow(&I,
IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
setOrigin(&I, getOrigin(OtherArg));
}
void visitMul(BinaryOperator &I) {
Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
if (constOp0 && !constOp1)
handleMulByConstant(I, constOp0, I.getOperand(1));
else if (constOp1 && !constOp0)
handleMulByConstant(I, constOp1, I.getOperand(0));
else
handleShadowOr(I);
}
void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
void visitSub(BinaryOperator &I) { handleShadowOr(I); }
void visitXor(BinaryOperator &I) { handleShadowOr(I); }
void handleDiv(Instruction &I) {
IRBuilder<> IRB(&I);
// Strict on the second argument.
insertShadowCheck(I.getOperand(1), &I);
setShadow(&I, getShadow(&I, 0));
setOrigin(&I, getOrigin(&I, 0));
}
void visitUDiv(BinaryOperator &I) { handleDiv(I); }
void visitSDiv(BinaryOperator &I) { handleDiv(I); }
void visitFDiv(BinaryOperator &I) { handleDiv(I); }
void visitURem(BinaryOperator &I) { handleDiv(I); }
void visitSRem(BinaryOperator &I) { handleDiv(I); }
void visitFRem(BinaryOperator &I) { handleDiv(I); }
/// \brief Instrument == and != comparisons.
///
/// Sometimes the comparison result is known even if some of the bits of the
/// arguments are not.
void handleEqualityComparison(ICmpInst &I) {
IRBuilder<> IRB(&I);
Value *A = I.getOperand(0);
Value *B = I.getOperand(1);
Value *Sa = getShadow(A);
Value *Sb = getShadow(B);
// Get rid of pointers and vectors of pointers.
// For ints (and vectors of ints), types of A and Sa match,
// and this is a no-op.
A = IRB.CreatePointerCast(A, Sa->getType());
B = IRB.CreatePointerCast(B, Sb->getType());
// A == B <==> (C = A^B) == 0
// A != B <==> (C = A^B) != 0
// Sc = Sa | Sb
Value *C = IRB.CreateXor(A, B);
Value *Sc = IRB.CreateOr(Sa, Sb);
// Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
// Result is defined if one of the following is true
// * there is a defined 1 bit in C
// * C is fully defined
// Si = !(C & ~Sc) && Sc
Value *Zero = Constant::getNullValue(Sc->getType());
Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
Value *Si =
IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
IRB.CreateICmpEQ(
IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
Si->setName("_msprop_icmp");
setShadow(&I, Si);
setOriginForNaryOp(I);
}
/// \brief Build the lowest possible value of V, taking into account V's
/// uninitialized bits.
Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
bool isSigned) {
if (isSigned) {
// Split shadow into sign bit and other bits.
Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
// Maximise the undefined shadow bit, minimize other undefined bits.
return
IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
} else {
// Minimize undefined bits.
return IRB.CreateAnd(A, IRB.CreateNot(Sa));
}
}
/// \brief Build the highest possible value of V, taking into account V's
/// uninitialized bits.
Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
bool isSigned) {
if (isSigned) {
// Split shadow into sign bit and other bits.
Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
// Minimise the undefined shadow bit, maximise other undefined bits.
return
IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
} else {
// Maximize undefined bits.
return IRB.CreateOr(A, Sa);
}
}
/// \brief Instrument relational comparisons.
///
/// This function does exact shadow propagation for all relational
/// comparisons of integers, pointers and vectors of those.
/// FIXME: output seems suboptimal when one of the operands is a constant
void handleRelationalComparisonExact(ICmpInst &I) {
IRBuilder<> IRB(&I);
Value *A = I.getOperand(0);
Value *B = I.getOperand(1);
Value *Sa = getShadow(A);
Value *Sb = getShadow(B);
// Get rid of pointers and vectors of pointers.
// For ints (and vectors of ints), types of A and Sa match,
// and this is a no-op.
A = IRB.CreatePointerCast(A, Sa->getType());
B = IRB.CreatePointerCast(B, Sb->getType());
// Let [a0, a1] be the interval of possible values of A, taking into account
// its undefined bits. Let [b0, b1] be the interval of possible values of B.
// Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
bool IsSigned = I.isSigned();
Value *S1 = IRB.CreateICmp(I.getPredicate(),
getLowestPossibleValue(IRB, A, Sa, IsSigned),
getHighestPossibleValue(IRB, B, Sb, IsSigned));
Value *S2 = IRB.CreateICmp(I.getPredicate(),
getHighestPossibleValue(IRB, A, Sa, IsSigned),
getLowestPossibleValue(IRB, B, Sb, IsSigned));
Value *Si = IRB.CreateXor(S1, S2);
setShadow(&I, Si);
setOriginForNaryOp(I);
}
/// \brief Instrument signed relational comparisons.
///
/// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
/// bit of the shadow. Everything else is delegated to handleShadowOr().
void handleSignedRelationalComparison(ICmpInst &I) {
Constant *constOp;
Value *op = nullptr;
CmpInst::Predicate pre;
if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
op = I.getOperand(0);
pre = I.getPredicate();
} else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
op = I.getOperand(1);
pre = I.getSwappedPredicate();
} else {
handleShadowOr(I);
return;
}
if ((constOp->isNullValue() &&
(pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
(constOp->isAllOnesValue() &&
(pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
IRBuilder<> IRB(&I);
Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
"_msprop_icmp_s");
setShadow(&I, Shadow);
setOrigin(&I, getOrigin(op));
} else {
handleShadowOr(I);
}
}
void visitICmpInst(ICmpInst &I) {
if (!ClHandleICmp) {
handleShadowOr(I);
return;
}
if (I.isEquality()) {
handleEqualityComparison(I);
return;
}
assert(I.isRelational());
if (ClHandleICmpExact) {
handleRelationalComparisonExact(I);
return;
}
if (I.isSigned()) {
handleSignedRelationalComparison(I);
return;
}
assert(I.isUnsigned());
if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
handleRelationalComparisonExact(I);
return;
}
handleShadowOr(I);
}
void visitFCmpInst(FCmpInst &I) {
handleShadowOr(I);
}
void handleShift(BinaryOperator &I) {
IRBuilder<> IRB(&I);
// If any of the S2 bits are poisoned, the whole thing is poisoned.
// Otherwise perform the same shift on S1.
Value *S1 = getShadow(&I, 0);
Value *S2 = getShadow(&I, 1);
Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
S2->getType());
Value *V2 = I.getOperand(1);
Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
setShadow(&I, IRB.CreateOr(Shift, S2Conv));
setOriginForNaryOp(I);
}
void visitShl(BinaryOperator &I) { handleShift(I); }
void visitAShr(BinaryOperator &I) { handleShift(I); }
void visitLShr(BinaryOperator &I) { handleShift(I); }
/// \brief Instrument llvm.memmove
///
/// At this point we don't know if llvm.memmove will be inlined or not.
/// If we don't instrument it and it gets inlined,
/// our interceptor will not kick in and we will lose the memmove.
/// If we instrument the call here, but it does not get inlined,
/// we will memove the shadow twice: which is bad in case
/// of overlapping regions. So, we simply lower the intrinsic to a call.
///
/// Similar situation exists for memcpy and memset.
void visitMemMoveInst(MemMoveInst &I) {
IRBuilder<> IRB(&I);
IRB.CreateCall(
MS.MemmoveFn,
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
I.eraseFromParent();
}
// Similar to memmove: avoid copying shadow twice.
// This is somewhat unfortunate as it may slowdown small constant memcpys.
// FIXME: consider doing manual inline for small constant sizes and proper
// alignment.
void visitMemCpyInst(MemCpyInst &I) {
IRBuilder<> IRB(&I);
IRB.CreateCall(
MS.MemcpyFn,
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
I.eraseFromParent();
}
// Same as memcpy.
void visitMemSetInst(MemSetInst &I) {
IRBuilder<> IRB(&I);
IRB.CreateCall(
MS.MemsetFn,
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
I.eraseFromParent();
}
void visitVAStartInst(VAStartInst &I) {
VAHelper->visitVAStartInst(I);
}
void visitVACopyInst(VACopyInst &I) {
VAHelper->visitVACopyInst(I);
}
/// \brief Handle vector store-like intrinsics.
///
/// Instrument intrinsics that look like a simple SIMD store: writes memory,
/// has 1 pointer argument and 1 vector argument, returns void.
bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
IRBuilder<> IRB(&I);
Value* Addr = I.getArgOperand(0);
Value *Shadow = getShadow(&I, 1);
Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
// We don't know the pointer alignment (could be unaligned SSE store!).
// Have to assume to worst case.
IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
if (ClCheckAccessAddress)
insertShadowCheck(Addr, &I);
// FIXME: use ClStoreCleanOrigin
// FIXME: factor out common code from materializeStores
if (MS.TrackOrigins)
IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
return true;
}
/// \brief Handle vector load-like intrinsics.
///
/// Instrument intrinsics that look like a simple SIMD load: reads memory,
/// has 1 pointer argument, returns a vector.
bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
IRBuilder<> IRB(&I);
Value *Addr = I.getArgOperand(0);
Type *ShadowTy = getShadowTy(&I);
if (PropagateShadow) {
Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
// We don't know the pointer alignment (could be unaligned SSE load!).
// Have to assume to worst case.
setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
} else {
setShadow(&I, getCleanShadow(&I));
}
if (ClCheckAccessAddress)
insertShadowCheck(Addr, &I);
if (MS.TrackOrigins) {
if (PropagateShadow)
setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
else
setOrigin(&I, getCleanOrigin());
}
return true;
}
/// \brief Handle (SIMD arithmetic)-like intrinsics.
///
/// Instrument intrinsics with any number of arguments of the same type,
/// equal to the return type. The type should be simple (no aggregates or
/// pointers; vectors are fine).
/// Caller guarantees that this intrinsic does not access memory.
bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
Type *RetTy = I.getType();
if (!(RetTy->isIntOrIntVectorTy() ||
RetTy->isFPOrFPVectorTy() ||
RetTy->isX86_MMXTy()))
return false;
unsigned NumArgOperands = I.getNumArgOperands();
for (unsigned i = 0; i < NumArgOperands; ++i) {
Type *Ty = I.getArgOperand(i)->getType();
if (Ty != RetTy)
return false;
}
IRBuilder<> IRB(&I);
ShadowAndOriginCombiner SC(this, IRB);
for (unsigned i = 0; i < NumArgOperands; ++i)
SC.Add(I.getArgOperand(i));
SC.Done(&I);
return true;
}
/// \brief Heuristically instrument unknown intrinsics.
///
/// The main purpose of this code is to do something reasonable with all
/// random intrinsics we might encounter, most importantly - SIMD intrinsics.
/// We recognize several classes of intrinsics by their argument types and
/// ModRefBehaviour and apply special intrumentation when we are reasonably
/// sure that we know what the intrinsic does.
///
/// We special-case intrinsics where this approach fails. See llvm.bswap
/// handling as an example of that.
bool handleUnknownIntrinsic(IntrinsicInst &I) {
unsigned NumArgOperands = I.getNumArgOperands();
if (NumArgOperands == 0)
return false;
if (NumArgOperands == 2 &&
I.getArgOperand(0)->getType()->isPointerTy() &&
I.getArgOperand(1)->getType()->isVectorTy() &&
I.getType()->isVoidTy() &&
!I.onlyReadsMemory()) {
// This looks like a vector store.
return handleVectorStoreIntrinsic(I);
}
if (NumArgOperands == 1 &&
I.getArgOperand(0)->getType()->isPointerTy() &&
I.getType()->isVectorTy() &&
I.onlyReadsMemory()) {
// This looks like a vector load.
return handleVectorLoadIntrinsic(I);
}
if (I.doesNotAccessMemory())
if (maybeHandleSimpleNomemIntrinsic(I))
return true;
// FIXME: detect and handle SSE maskstore/maskload
return false;
}
void handleBswap(IntrinsicInst &I) {
IRBuilder<> IRB(&I);
Value *Op = I.getArgOperand(0);
Type *OpType = Op->getType();
Function *BswapFunc = Intrinsic::getDeclaration(
F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
setOrigin(&I, getOrigin(Op));
}
// \brief Instrument vector convert instrinsic.
//
// This function instruments intrinsics like cvtsi2ss:
// %Out = int_xxx_cvtyyy(%ConvertOp)
// or
// %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
// Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
// number \p Out elements, and (if has 2 arguments) copies the rest of the
// elements from \p CopyOp.
// In most cases conversion involves floating-point value which may trigger a
// hardware exception when not fully initialized. For this reason we require
// \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
// We copy the shadow of \p CopyOp[NumUsedElements:] to \p
// Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
// return a fully initialized value.
void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
IRBuilder<> IRB(&I);
Value *CopyOp, *ConvertOp;
switch (I.getNumArgOperands()) {
case 3:
assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
case 2:
CopyOp = I.getArgOperand(0);
ConvertOp = I.getArgOperand(1);
break;
case 1:
ConvertOp = I.getArgOperand(0);
CopyOp = nullptr;
break;
default:
llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
}
// The first *NumUsedElements* elements of ConvertOp are converted to the
// same number of output elements. The rest of the output is copied from
// CopyOp, or (if not available) filled with zeroes.
// Combine shadow for elements of ConvertOp that are used in this operation,
// and insert a check.
// FIXME: consider propagating shadow of ConvertOp, at least in the case of
// int->any conversion.
Value *ConvertShadow = getShadow(ConvertOp);
Value *AggShadow = nullptr;
if (ConvertOp->getType()->isVectorTy()) {
AggShadow = IRB.CreateExtractElement(
ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
for (int i = 1; i < NumUsedElements; ++i) {
Value *MoreShadow = IRB.CreateExtractElement(
ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
}
} else {
AggShadow = ConvertShadow;
}
assert(AggShadow->getType()->isIntegerTy());
insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
// Build result shadow by zero-filling parts of CopyOp shadow that come from
// ConvertOp.
if (CopyOp) {
assert(CopyOp->getType() == I.getType());
assert(CopyOp->getType()->isVectorTy());
Value *ResultShadow = getShadow(CopyOp);
Type *EltTy = ResultShadow->getType()->getVectorElementType();
for (int i = 0; i < NumUsedElements; ++i) {
ResultShadow = IRB.CreateInsertElement(
ResultShadow, ConstantInt::getNullValue(EltTy),
ConstantInt::get(IRB.getInt32Ty(), i));
}
setShadow(&I, ResultShadow);
setOrigin(&I, getOrigin(CopyOp));
} else {
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
}
}
// Given a scalar or vector, extract lower 64 bits (or less), and return all
// zeroes if it is zero, and all ones otherwise.
Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
if (S->getType()->isVectorTy())
S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
assert(S->getType()->getPrimitiveSizeInBits() <= 64);
Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
return CreateShadowCast(IRB, S2, T, /* Signed */ true);
}
Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
Type *T = S->getType();
assert(T->isVectorTy());
Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
return IRB.CreateSExt(S2, T);
}
// \brief Instrument vector shift instrinsic.
//
// This function instruments intrinsics like int_x86_avx2_psll_w.
// Intrinsic shifts %In by %ShiftSize bits.
// %ShiftSize may be a vector. In that case the lower 64 bits determine shift
// size, and the rest is ignored. Behavior is defined even if shift size is
// greater than register (or field) width.
void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
assert(I.getNumArgOperands() == 2);
IRBuilder<> IRB(&I);
// If any of the S2 bits are poisoned, the whole thing is poisoned.
// Otherwise perform the same shift on S1.
Value *S1 = getShadow(&I, 0);
Value *S2 = getShadow(&I, 1);
Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
: Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
Value *V1 = I.getOperand(0);
Value *V2 = I.getOperand(1);
Value *Shift = IRB.CreateCall(I.getCalledValue(),
{IRB.CreateBitCast(S1, V1->getType()), V2});
Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
setShadow(&I, IRB.CreateOr(Shift, S2Conv));
setOriginForNaryOp(I);
}
// \brief Get an X86_MMX-sized vector type.
Type *getMMXVectorTy(unsigned EltSizeInBits) {
const unsigned X86_MMXSizeInBits = 64;
return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
X86_MMXSizeInBits / EltSizeInBits);
}
// \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
// intrinsic.
Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
switch (id) {
case llvm::Intrinsic::x86_sse2_packsswb_128:
case llvm::Intrinsic::x86_sse2_packuswb_128:
return llvm::Intrinsic::x86_sse2_packsswb_128;
case llvm::Intrinsic::x86_sse2_packssdw_128:
case llvm::Intrinsic::x86_sse41_packusdw:
return llvm::Intrinsic::x86_sse2_packssdw_128;
case llvm::Intrinsic::x86_avx2_packsswb:
case llvm::Intrinsic::x86_avx2_packuswb:
return llvm::Intrinsic::x86_avx2_packsswb;
case llvm::Intrinsic::x86_avx2_packssdw:
case llvm::Intrinsic::x86_avx2_packusdw:
return llvm::Intrinsic::x86_avx2_packssdw;
case llvm::Intrinsic::x86_mmx_packsswb:
case llvm::Intrinsic::x86_mmx_packuswb:
return llvm::Intrinsic::x86_mmx_packsswb;
case llvm::Intrinsic::x86_mmx_packssdw:
return llvm::Intrinsic::x86_mmx_packssdw;
default:
llvm_unreachable("unexpected intrinsic id");
}
}
2014-06-17 13:26:00 +02:00
// \brief Instrument vector pack instrinsic.
//
// This function instruments intrinsics like x86_mmx_packsswb, that
2014-06-17 13:26:00 +02:00
// packs elements of 2 input vectors into half as many bits with saturation.
// Shadow is propagated with the signed variant of the same intrinsic applied
// to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
// EltSizeInBits is used only for x86mmx arguments.
void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
assert(I.getNumArgOperands() == 2);
bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
IRBuilder<> IRB(&I);
Value *S1 = getShadow(&I, 0);
Value *S2 = getShadow(&I, 1);
assert(isX86_MMX || S1->getType()->isVectorTy());
// SExt and ICmpNE below must apply to individual elements of input vectors.
// In case of x86mmx arguments, cast them to appropriate vector types and
// back.
Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
if (isX86_MMX) {
S1 = IRB.CreateBitCast(S1, T);
S2 = IRB.CreateBitCast(S2, T);
}
Value *S1_ext = IRB.CreateSExt(
IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
Value *S2_ext = IRB.CreateSExt(
IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
if (isX86_MMX) {
Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
}
Function *ShadowFn = Intrinsic::getDeclaration(
F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
Value *S =
IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
setShadow(&I, S);
setOriginForNaryOp(I);
}
// \brief Instrument sum-of-absolute-differencies intrinsic.
void handleVectorSadIntrinsic(IntrinsicInst &I) {
const unsigned SignificantBitsPerResultElement = 16;
bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
unsigned ZeroBitsPerResultElement =
ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
IRBuilder<> IRB(&I);
Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
S = IRB.CreateBitCast(S, ResTy);
S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
ResTy);
S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
S = IRB.CreateBitCast(S, getShadowTy(&I));
setShadow(&I, S);
setOriginForNaryOp(I);
}
// \brief Instrument multiply-add intrinsic.
void handleVectorPmaddIntrinsic(IntrinsicInst &I,
unsigned EltSizeInBits = 0) {
bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
IRBuilder<> IRB(&I);
Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
S = IRB.CreateBitCast(S, ResTy);
S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
ResTy);
S = IRB.CreateBitCast(S, getShadowTy(&I));
setShadow(&I, S);
setOriginForNaryOp(I);
}
void visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case llvm::Intrinsic::bswap:
handleBswap(I);
break;
case llvm::Intrinsic::x86_avx512_vcvtsd2usi64:
case llvm::Intrinsic::x86_avx512_vcvtsd2usi32:
case llvm::Intrinsic::x86_avx512_vcvtss2usi64:
case llvm::Intrinsic::x86_avx512_vcvtss2usi32:
case llvm::Intrinsic::x86_avx512_cvttss2usi64:
case llvm::Intrinsic::x86_avx512_cvttss2usi:
case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
case llvm::Intrinsic::x86_avx512_cvttsd2usi:
case llvm::Intrinsic::x86_avx512_cvtusi2sd:
case llvm::Intrinsic::x86_avx512_cvtusi2ss:
case llvm::Intrinsic::x86_avx512_cvtusi642sd:
case llvm::Intrinsic::x86_avx512_cvtusi642ss:
case llvm::Intrinsic::x86_sse2_cvtsd2si64:
case llvm::Intrinsic::x86_sse2_cvtsd2si:
case llvm::Intrinsic::x86_sse2_cvtsd2ss:
case llvm::Intrinsic::x86_sse2_cvtsi2sd:
case llvm::Intrinsic::x86_sse2_cvtsi642sd:
case llvm::Intrinsic::x86_sse2_cvtss2sd:
case llvm::Intrinsic::x86_sse2_cvttsd2si64:
case llvm::Intrinsic::x86_sse2_cvttsd2si:
case llvm::Intrinsic::x86_sse_cvtsi2ss:
case llvm::Intrinsic::x86_sse_cvtsi642ss:
case llvm::Intrinsic::x86_sse_cvtss2si64:
case llvm::Intrinsic::x86_sse_cvtss2si:
case llvm::Intrinsic::x86_sse_cvttss2si64:
case llvm::Intrinsic::x86_sse_cvttss2si:
handleVectorConvertIntrinsic(I, 1);
break;
case llvm::Intrinsic::x86_sse2_cvtdq2pd:
case llvm::Intrinsic::x86_sse2_cvtps2pd:
case llvm::Intrinsic::x86_sse_cvtps2pi:
case llvm::Intrinsic::x86_sse_cvttps2pi:
handleVectorConvertIntrinsic(I, 2);
break;
case llvm::Intrinsic::x86_avx2_psll_w:
case llvm::Intrinsic::x86_avx2_psll_d:
case llvm::Intrinsic::x86_avx2_psll_q:
case llvm::Intrinsic::x86_avx2_pslli_w:
case llvm::Intrinsic::x86_avx2_pslli_d:
case llvm::Intrinsic::x86_avx2_pslli_q:
case llvm::Intrinsic::x86_avx2_psrl_w:
case llvm::Intrinsic::x86_avx2_psrl_d:
case llvm::Intrinsic::x86_avx2_psrl_q:
case llvm::Intrinsic::x86_avx2_psra_w:
case llvm::Intrinsic::x86_avx2_psra_d:
case llvm::Intrinsic::x86_avx2_psrli_w:
case llvm::Intrinsic::x86_avx2_psrli_d:
case llvm::Intrinsic::x86_avx2_psrli_q:
case llvm::Intrinsic::x86_avx2_psrai_w:
case llvm::Intrinsic::x86_avx2_psrai_d:
case llvm::Intrinsic::x86_sse2_psll_w:
case llvm::Intrinsic::x86_sse2_psll_d:
case llvm::Intrinsic::x86_sse2_psll_q:
case llvm::Intrinsic::x86_sse2_pslli_w:
case llvm::Intrinsic::x86_sse2_pslli_d:
case llvm::Intrinsic::x86_sse2_pslli_q:
case llvm::Intrinsic::x86_sse2_psrl_w:
case llvm::Intrinsic::x86_sse2_psrl_d:
case llvm::Intrinsic::x86_sse2_psrl_q:
case llvm::Intrinsic::x86_sse2_psra_w:
case llvm::Intrinsic::x86_sse2_psra_d:
case llvm::Intrinsic::x86_sse2_psrli_w:
case llvm::Intrinsic::x86_sse2_psrli_d:
case llvm::Intrinsic::x86_sse2_psrli_q:
case llvm::Intrinsic::x86_sse2_psrai_w:
case llvm::Intrinsic::x86_sse2_psrai_d:
case llvm::Intrinsic::x86_mmx_psll_w:
case llvm::Intrinsic::x86_mmx_psll_d:
case llvm::Intrinsic::x86_mmx_psll_q:
case llvm::Intrinsic::x86_mmx_pslli_w:
case llvm::Intrinsic::x86_mmx_pslli_d:
case llvm::Intrinsic::x86_mmx_pslli_q:
case llvm::Intrinsic::x86_mmx_psrl_w:
case llvm::Intrinsic::x86_mmx_psrl_d:
case llvm::Intrinsic::x86_mmx_psrl_q:
case llvm::Intrinsic::x86_mmx_psra_w:
case llvm::Intrinsic::x86_mmx_psra_d:
case llvm::Intrinsic::x86_mmx_psrli_w:
case llvm::Intrinsic::x86_mmx_psrli_d:
case llvm::Intrinsic::x86_mmx_psrli_q:
case llvm::Intrinsic::x86_mmx_psrai_w:
case llvm::Intrinsic::x86_mmx_psrai_d:
handleVectorShiftIntrinsic(I, /* Variable */ false);
break;
case llvm::Intrinsic::x86_avx2_psllv_d:
case llvm::Intrinsic::x86_avx2_psllv_d_256:
case llvm::Intrinsic::x86_avx2_psllv_q:
case llvm::Intrinsic::x86_avx2_psllv_q_256:
case llvm::Intrinsic::x86_avx2_psrlv_d:
case llvm::Intrinsic::x86_avx2_psrlv_d_256:
case llvm::Intrinsic::x86_avx2_psrlv_q:
case llvm::Intrinsic::x86_avx2_psrlv_q_256:
case llvm::Intrinsic::x86_avx2_psrav_d:
case llvm::Intrinsic::x86_avx2_psrav_d_256:
handleVectorShiftIntrinsic(I, /* Variable */ true);
break;
case llvm::Intrinsic::x86_sse2_packsswb_128:
case llvm::Intrinsic::x86_sse2_packssdw_128:
case llvm::Intrinsic::x86_sse2_packuswb_128:
case llvm::Intrinsic::x86_sse41_packusdw:
case llvm::Intrinsic::x86_avx2_packsswb:
case llvm::Intrinsic::x86_avx2_packssdw:
case llvm::Intrinsic::x86_avx2_packuswb:
case llvm::Intrinsic::x86_avx2_packusdw:
handleVectorPackIntrinsic(I);
break;
case llvm::Intrinsic::x86_mmx_packsswb:
case llvm::Intrinsic::x86_mmx_packuswb:
handleVectorPackIntrinsic(I, 16);
break;
case llvm::Intrinsic::x86_mmx_packssdw:
handleVectorPackIntrinsic(I, 32);
break;
case llvm::Intrinsic::x86_mmx_psad_bw:
case llvm::Intrinsic::x86_sse2_psad_bw:
case llvm::Intrinsic::x86_avx2_psad_bw:
handleVectorSadIntrinsic(I);
break;
case llvm::Intrinsic::x86_sse2_pmadd_wd:
case llvm::Intrinsic::x86_avx2_pmadd_wd:
case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
handleVectorPmaddIntrinsic(I);
break;
case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
handleVectorPmaddIntrinsic(I, 8);
break;
case llvm::Intrinsic::x86_mmx_pmadd_wd:
handleVectorPmaddIntrinsic(I, 16);
break;
default:
if (!handleUnknownIntrinsic(I))
visitInstruction(I);
break;
}
}
void visitCallSite(CallSite CS) {
Instruction &I = *CS.getInstruction();
assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
if (CS.isCall()) {
CallInst *Call = cast<CallInst>(&I);
// For inline asm, do the usual thing: check argument shadow and mark all
// outputs as clean. Note that any side effects of the inline asm that are
// not immediately visible in its constraints are not handled.
if (Call->isInlineAsm()) {
visitInstruction(I);
return;
}
assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
// We are going to insert code that relies on the fact that the callee
// will become a non-readonly function after it is instrumented by us. To
// prevent this code from being optimized out, mark that function
// non-readonly in advance.
if (Function *Func = Call->getCalledFunction()) {
// Clear out readonly/readnone attributes.
AttrBuilder B;
B.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::ReadNone);
Func->removeAttributes(AttributeSet::FunctionIndex,
AttributeSet::get(Func->getContext(),
AttributeSet::FunctionIndex,
B));
}
}
IRBuilder<> IRB(&I);
unsigned ArgOffset = 0;
DEBUG(dbgs() << " CallSite: " << I << "\n");
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
ArgIt != End; ++ArgIt) {
Value *A = *ArgIt;
unsigned i = ArgIt - CS.arg_begin();
if (!A->getType()->isSized()) {
DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
continue;
}
unsigned Size = 0;
Value *Store = nullptr;
// Compute the Shadow for arg even if it is ByVal, because
// in that case getShadow() will copy the actual arg shadow to
// __msan_param_tls.
Value *ArgShadow = getShadow(A);
Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
" Shadow: " << *ArgShadow << "\n");
bool ArgIsInitialized = false;
const DataLayout &DL = F.getParent()->getDataLayout();
if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
assert(A->getType()->isPointerTy() &&
"ByVal argument is not a pointer!");
Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
if (ArgOffset + Size > kParamTLSSize) break;
unsigned ParamAlignment = CS.getParamAlignment(i + 1);
unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
Store = IRB.CreateMemCpy(ArgShadowBase,
getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
Size, Alignment);
} else {
Size = DL.getTypeAllocSize(A->getType());
if (ArgOffset + Size > kParamTLSSize) break;
Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
kShadowTLSAlignment);
Constant *Cst = dyn_cast<Constant>(ArgShadow);
if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
}
if (MS.TrackOrigins && !ArgIsInitialized)
IRB.CreateStore(getOrigin(A),
getOriginPtrForArgument(A, IRB, ArgOffset));
(void)Store;
2014-04-28 06:05:08 +02:00
assert(Size != 0 && Store != nullptr);
DEBUG(dbgs() << " Param:" << *Store << "\n");
ArgOffset += alignTo(Size, 8);
}
DEBUG(dbgs() << " done with call args\n");
FunctionType *FT =
cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
if (FT->isVarArg()) {
VAHelper->visitCallSite(CS, IRB);
}
// Now, get the shadow for the RetVal.
if (!I.getType()->isSized()) return;
// Don't emit the epilogue for musttail call returns.
if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
IRBuilder<> IRBBefore(&I);
// Until we have full dynamic coverage, make sure the retval shadow is 0.
Value *Base = getShadowPtrForRetval(&I, IRBBefore);
IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
BasicBlock::iterator NextInsn;
if (CS.isCall()) {
NextInsn = ++I.getIterator();
assert(NextInsn != I.getParent()->end());
} else {
BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
if (!NormalDest->getSinglePredecessor()) {
// FIXME: this case is tricky, so we are just conservative here.
// Perhaps we need to split the edge between this BB and NormalDest,
// but a naive attempt to use SplitEdge leads to a crash.
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
return;
}
NextInsn = NormalDest->getFirstInsertionPt();
assert(NextInsn != NormalDest->end() &&
"Could not find insertion point for retval shadow load");
}
IRBuilder<> IRBAfter(&*NextInsn);
Value *RetvalShadow =
IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
kShadowTLSAlignment, "_msret");
setShadow(&I, RetvalShadow);
if (MS.TrackOrigins)
setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
}
bool isAMustTailRetVal(Value *RetVal) {
if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
RetVal = I->getOperand(0);
}
if (auto *I = dyn_cast<CallInst>(RetVal)) {
return I->isMustTailCall();
}
return false;
}
void visitReturnInst(ReturnInst &I) {
IRBuilder<> IRB(&I);
Value *RetVal = I.getReturnValue();
if (!RetVal) return;
// Don't emit the epilogue for musttail call returns.
if (isAMustTailRetVal(RetVal)) return;
Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
if (CheckReturnValue) {
insertShadowCheck(RetVal, &I);
Value *Shadow = getCleanShadow(RetVal);
IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
} else {
Value *Shadow = getShadow(RetVal);
IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
// FIXME: make it conditional if ClStoreCleanOrigin==0
if (MS.TrackOrigins)
IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
}
}
void visitPHINode(PHINode &I) {
IRBuilder<> IRB(&I);
if (!PropagateShadow) {
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
return;
}
ShadowPHINodes.push_back(&I);
setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
"_msphi_s"));
if (MS.TrackOrigins)
setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
"_msphi_o"));
}
void visitAllocaInst(AllocaInst &I) {
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
IRBuilder<> IRB(I.getNextNode());
const DataLayout &DL = F.getParent()->getDataLayout();
uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
if (PoisonStack && ClPoisonStackWithCall) {
IRB.CreateCall(MS.MsanPoisonStackFn,
{IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
ConstantInt::get(MS.IntptrTy, Size)});
} else {
Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
}
if (PoisonStack && MS.TrackOrigins) {
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
// We create a string with a description of the stack allocation and
// pass it into __msan_set_alloca_origin.
// It will be printed by the run-time if stack-originated UMR is found.
// The first 4 bytes of the string are set to '----' and will be replaced
// by __msan_va_arg_overflow_size_tls at the first call.
StackDescription << "----" << I.getName() << "@" << F.getName();
Value *Descr =
createPrivateNonConstGlobalForString(*F.getParent(),
StackDescription.str());
IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
{IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
ConstantInt::get(MS.IntptrTy, Size),
IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
IRB.CreatePointerCast(&F, MS.IntptrTy)});
}
}
void visitSelectInst(SelectInst& I) {
IRBuilder<> IRB(&I);
// a = select b, c, d
Value *B = I.getCondition();
Value *C = I.getTrueValue();
Value *D = I.getFalseValue();
Value *Sb = getShadow(B);
Value *Sc = getShadow(C);
Value *Sd = getShadow(D);
// Result shadow if condition shadow is 0.
Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
Value *Sa1;
if (I.getType()->isAggregateType()) {
// To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
// an extra "select". This results in much more compact IR.
// Sa = select Sb, poisoned, (select b, Sc, Sd)
Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
} else {
// Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
// If Sb (condition is poisoned), look for bits in c and d that are equal
// and both unpoisoned.
// If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
// Cast arguments to shadow-compatible type.
C = CreateAppToShadowCast(IRB, C);
D = CreateAppToShadowCast(IRB, D);
// Result shadow if condition shadow is 1.
Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
}
Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
setShadow(&I, Sa);
if (MS.TrackOrigins) {
// Origins are always i32, so any vector conditions must be flattened.
// FIXME: consider tracking vector origins for app vectors?
if (B->getType()->isVectorTy()) {
Type *FlatTy = getShadowTyNoVec(B->getType());
B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
ConstantInt::getNullValue(FlatTy));
Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
ConstantInt::getNullValue(FlatTy));
}
// a = select b, c, d
// Oa = Sb ? Ob : (b ? Oc : Od)
setOrigin(
&I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
getOrigin(I.getFalseValue()))));
}
}
void visitLandingPadInst(LandingPadInst &I) {
// Do nothing.
// See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
}
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 06:38:55 +01:00
void visitCatchSwitchInst(CatchSwitchInst &I) {
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
}
[IR] Reformulate LLVM's EH funclet IR While we have successfully implemented a funclet-oriented EH scheme on top of LLVM IR, our scheme has some notable deficiencies: - catchendpad and cleanupendpad are necessary in the current design but they are difficult to explain to others, even to seasoned LLVM experts. - catchendpad and cleanupendpad are optimization barriers. They cannot be split and force all potentially throwing call-sites to be invokes. This has a noticable effect on the quality of our code generation. - catchpad, while similar in some aspects to invoke, is fairly awkward. It is unsplittable, starts a funclet, and has control flow to other funclets. - The nesting relationship between funclets is currently a property of control flow edges. Because of this, we are forced to carefully analyze the flow graph to see if there might potentially exist illegal nesting among funclets. While we have logic to clone funclets when they are illegally nested, it would be nicer if we had a representation which forbade them upfront. Let's clean this up a bit by doing the following: - Instead, make catchpad more like cleanuppad and landingpad: no control flow, just a bunch of simple operands; catchpad would be splittable. - Introduce catchswitch, a control flow instruction designed to model the constraints of funclet oriented EH. - Make funclet scoping explicit by having funclet instructions consume the token produced by the funclet which contains them. - Remove catchendpad and cleanupendpad. Their presence can be inferred implicitly using coloring information. N.B. The state numbering code for the CLR has been updated but the veracity of it's output cannot be spoken for. An expert should take a look to make sure the results are reasonable. Reviewers: rnk, JosephTremoulet, andrew.w.kaylor Differential Revision: http://reviews.llvm.org/D15139 llvm-svn: 255422
2015-12-12 06:38:55 +01:00
void visitFuncletPadInst(FuncletPadInst &I) {
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
}
void visitGetElementPtrInst(GetElementPtrInst &I) {
handleShadowOr(I);
}
void visitExtractValueInst(ExtractValueInst &I) {
IRBuilder<> IRB(&I);
Value *Agg = I.getAggregateOperand();
DEBUG(dbgs() << "ExtractValue: " << I << "\n");
Value *AggShadow = getShadow(Agg);
DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
setShadow(&I, ResShadow);
setOriginForNaryOp(I);
}
void visitInsertValueInst(InsertValueInst &I) {
IRBuilder<> IRB(&I);
DEBUG(dbgs() << "InsertValue: " << I << "\n");
Value *AggShadow = getShadow(I.getAggregateOperand());
Value *InsShadow = getShadow(I.getInsertedValueOperand());
DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
DEBUG(dbgs() << " Res: " << *Res << "\n");
setShadow(&I, Res);
setOriginForNaryOp(I);
}
void dumpInst(Instruction &I) {
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
} else {
errs() << "ZZZ " << I.getOpcodeName() << "\n";
}
errs() << "QQQ " << I << "\n";
}
void visitResumeInst(ResumeInst &I) {
DEBUG(dbgs() << "Resume: " << I << "\n");
// Nothing to do here.
}
void visitCleanupReturnInst(CleanupReturnInst &CRI) {
DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
// Nothing to do here.
}
void visitCatchReturnInst(CatchReturnInst &CRI) {
DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
// Nothing to do here.
}
void visitInstruction(Instruction &I) {
// Everything else: stop propagating and check for poisoned shadow.
if (ClDumpStrictInstructions)
dumpInst(I);
DEBUG(dbgs() << "DEFAULT: " << I << "\n");
for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
insertShadowCheck(I.getOperand(i), &I);
setShadow(&I, getCleanShadow(&I));
setOrigin(&I, getCleanOrigin());
}
};
/// \brief AMD64-specific implementation of VarArgHelper.
struct VarArgAMD64Helper : public VarArgHelper {
// An unfortunate workaround for asymmetric lowering of va_arg stuff.
// See a comment in visitCallSite for more details.
static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
static const unsigned AMD64FpEndOffset = 176;
Function &F;
MemorySanitizer &MS;
MemorySanitizerVisitor &MSV;
Value *VAArgTLSCopy;
Value *VAArgOverflowSize;
SmallVector<CallInst*, 16> VAStartInstrumentationList;
VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
MemorySanitizerVisitor &MSV)
: F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
VAArgOverflowSize(nullptr) {}
enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
ArgKind classifyArgument(Value* arg) {
// A very rough approximation of X86_64 argument classification rules.
Type *T = arg->getType();
if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
return AK_FloatingPoint;
if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
return AK_GeneralPurpose;
if (T->isPointerTy())
return AK_GeneralPurpose;
return AK_Memory;
}
// For VarArg functions, store the argument shadow in an ABI-specific format
// that corresponds to va_list layout.
// We do this because Clang lowers va_arg in the frontend, and this pass
// only sees the low level code that deals with va_list internals.
// A much easier alternative (provided that Clang emits va_arg instructions)
// would have been to associate each live instance of va_list with a copy of
// MSanParamTLS, and extract shadow on va_arg() call in the argument list
// order.
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
unsigned GpOffset = 0;
unsigned FpOffset = AMD64GpEndOffset;
unsigned OverflowOffset = AMD64FpEndOffset;
const DataLayout &DL = F.getParent()->getDataLayout();
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
ArgIt != End; ++ArgIt) {
Value *A = *ArgIt;
unsigned ArgNo = CS.getArgumentNo(ArgIt);
bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
if (IsByVal) {
// ByVal arguments always go to the overflow area.
assert(A->getType()->isPointerTy());
Type *RealTy = A->getType()->getPointerElementType();
uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
OverflowOffset += alignTo(ArgSize, 8);
IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
ArgSize, kShadowTLSAlignment);
} else {
ArgKind AK = classifyArgument(A);
if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
AK = AK_Memory;
if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
AK = AK_Memory;
Value *Base;
switch (AK) {
case AK_GeneralPurpose:
Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
GpOffset += 8;
break;
case AK_FloatingPoint:
Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
FpOffset += 16;
break;
case AK_Memory:
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
OverflowOffset += alignTo(ArgSize, 8);
}
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
}
}
Constant *OverflowSize =
ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
}
/// \brief Compute the shadow address for a given va_arg.
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
int ArgOffset) {
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
"_msarg");
}
void visitVAStartInst(VAStartInst &I) override {
if (F.getCallingConv() == CallingConv::X86_64_Win64)
return;
IRBuilder<> IRB(&I);
VAStartInstrumentationList.push_back(&I);
Value *VAListTag = I.getArgOperand(0);
Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants.
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
/* size */24, /* alignment */8, false);
}
void visitVACopyInst(VACopyInst &I) override {
if (F.getCallingConv() == CallingConv::X86_64_Win64)
return;
IRBuilder<> IRB(&I);
Value *VAListTag = I.getArgOperand(0);
Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants.
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
/* size */24, /* alignment */8, false);
}
void finalizeInstrumentation() override {
assert(!VAArgOverflowSize && !VAArgTLSCopy &&
"finalizeInstrumentation called twice");
if (!VAStartInstrumentationList.empty()) {
// If there is a va_start in this function, make a backup copy of
// va_arg_tls somewhere in the function entry block.
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
Value *CopySize =
IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
VAArgOverflowSize);
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
}
// Instrument va_start.
// Copy va_list shadow from the backup copy of the TLS contents.
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
CallInst *OrigInst = VAStartInstrumentationList[i];
IRBuilder<> IRB(OrigInst->getNextNode());
Value *VAListTag = OrigInst->getArgOperand(0);
Value *RegSaveAreaPtrPtr =
IRB.CreateIntToPtr(
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
ConstantInt::get(MS.IntptrTy, 16)),
Type::getInt64PtrTy(*MS.C));
Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
Value *RegSaveAreaShadowPtr =
MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
AMD64FpEndOffset, 16);
Value *OverflowArgAreaPtrPtr =
IRB.CreateIntToPtr(
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
ConstantInt::get(MS.IntptrTy, 8)),
Type::getInt64PtrTy(*MS.C));
Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
Value *OverflowArgAreaShadowPtr =
MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
AMD64FpEndOffset);
IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
}
}
};
/// \brief MIPS64-specific implementation of VarArgHelper.
struct VarArgMIPS64Helper : public VarArgHelper {
Function &F;
MemorySanitizer &MS;
MemorySanitizerVisitor &MSV;
Value *VAArgTLSCopy;
Value *VAArgSize;
SmallVector<CallInst*, 16> VAStartInstrumentationList;
VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
MemorySanitizerVisitor &MSV)
: F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
VAArgSize(nullptr) {}
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
unsigned VAArgOffset = 0;
const DataLayout &DL = F.getParent()->getDataLayout();
for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
ArgIt != End; ++ArgIt) {
Value *A = *ArgIt;
Value *Base;
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
#if defined(__MIPSEB__) || defined(MIPSEB)
// Adjusting the shadow for argument with size < 8 to match the placement
// of bits in big endian system
if (ArgSize < 8)
VAArgOffset += (8 - ArgSize);
#endif
Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
VAArgOffset += ArgSize;
VAArgOffset = alignTo(VAArgOffset, 8);
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
}
Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
// Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
// a new class member i.e. it is the total size of all VarArgs.
IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
}
/// \brief Compute the shadow address for a given va_arg.
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
int ArgOffset) {
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
"_msarg");
}
void visitVAStartInst(VAStartInst &I) override {
IRBuilder<> IRB(&I);
VAStartInstrumentationList.push_back(&I);
Value *VAListTag = I.getArgOperand(0);
Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
/* size */8, /* alignment */8, false);
}
void visitVACopyInst(VACopyInst &I) override {
IRBuilder<> IRB(&I);
Value *VAListTag = I.getArgOperand(0);
Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants.
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
/* size */8, /* alignment */8, false);
}
void finalizeInstrumentation() override {
assert(!VAArgSize && !VAArgTLSCopy &&
"finalizeInstrumentation called twice");
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
VAArgSize);
if (!VAStartInstrumentationList.empty()) {
// If there is a va_start in this function, make a backup copy of
// va_arg_tls somewhere in the function entry block.
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
}
// Instrument va_start.
// Copy va_list shadow from the backup copy of the TLS contents.
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
CallInst *OrigInst = VAStartInstrumentationList[i];
IRBuilder<> IRB(OrigInst->getNextNode());
Value *VAListTag = OrigInst->getArgOperand(0);
Value *RegSaveAreaPtrPtr =
IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
Type::getInt64PtrTy(*MS.C));
Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
Value *RegSaveAreaShadowPtr =
MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
}
}
};
/// \brief AArch64-specific implementation of VarArgHelper.
struct VarArgAArch64Helper : public VarArgHelper {
static const unsigned kAArch64GrArgSize = 56;
static const unsigned kAArch64VrArgSize = 128;
static const unsigned AArch64GrBegOffset = 0;
static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
// Make VR space aligned to 16 bytes.
static const unsigned AArch64VrBegOffset = AArch64GrEndOffset + 8;
static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
+ kAArch64VrArgSize;
static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
Function &F;
MemorySanitizer &MS;
MemorySanitizerVisitor &MSV;
Value *VAArgTLSCopy;
Value *VAArgOverflowSize;
SmallVector<CallInst*, 16> VAStartInstrumentationList;
VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
MemorySanitizerVisitor &MSV)
: F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
VAArgOverflowSize(nullptr) {}
enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
ArgKind classifyArgument(Value* arg) {
Type *T = arg->getType();
if (T->isFPOrFPVectorTy())
return AK_FloatingPoint;
if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
|| (T->isPointerTy()))
return AK_GeneralPurpose;
return AK_Memory;
}
// The instrumentation stores the argument shadow in a non ABI-specific
// format because it does not know which argument is named (since Clang,
// like x86_64 case, lowers the va_args in the frontend and this pass only
// sees the low level code that deals with va_list internals).
// The first seven GR registers are saved in the first 56 bytes of the
// va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
// the remaining arguments.
// Using constant offset within the va_arg TLS array allows fast copy
// in the finalize instrumentation.
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
unsigned GrOffset = AArch64GrBegOffset;
unsigned VrOffset = AArch64VrBegOffset;
unsigned OverflowOffset = AArch64VAEndOffset;
const DataLayout &DL = F.getParent()->getDataLayout();
for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
ArgIt != End; ++ArgIt) {
Value *A = *ArgIt;
ArgKind AK = classifyArgument(A);
if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
AK = AK_Memory;
if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
AK = AK_Memory;
Value *Base;
switch (AK) {
case AK_GeneralPurpose:
Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset);
GrOffset += 8;
break;
case AK_FloatingPoint:
Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset);
VrOffset += 16;
break;
case AK_Memory:
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
OverflowOffset += alignTo(ArgSize, 8);
break;
}
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
}
Constant *OverflowSize =
ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
}
/// Compute the shadow address for a given va_arg.
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
int ArgOffset) {
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
"_msarg");
}
void visitVAStartInst(VAStartInst &I) override {
IRBuilder<> IRB(&I);
VAStartInstrumentationList.push_back(&I);
Value *VAListTag = I.getArgOperand(0);
Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants (size of va_list).
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
/* size */32, /* alignment */8, false);
}
void visitVACopyInst(VACopyInst &I) override {
IRBuilder<> IRB(&I);
Value *VAListTag = I.getArgOperand(0);
Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
// Unpoison the whole __va_list_tag.
// FIXME: magic ABI constants (size of va_list).
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
/* size */32, /* alignment */8, false);
}
// Retrieve a va_list field of 'void*' size.
Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
Value *SaveAreaPtrPtr =
IRB.CreateIntToPtr(
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
ConstantInt::get(MS.IntptrTy, offset)),
Type::getInt64PtrTy(*MS.C));
return IRB.CreateLoad(SaveAreaPtrPtr);
}
// Retrieve a va_list field of 'int' size.
Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
Value *SaveAreaPtr =
IRB.CreateIntToPtr(
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
ConstantInt::get(MS.IntptrTy, offset)),
Type::getInt32PtrTy(*MS.C));
Value *SaveArea32 = IRB.CreateLoad(SaveAreaPtr);
return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
}
void finalizeInstrumentation() override {
assert(!VAArgOverflowSize && !VAArgTLSCopy &&
"finalizeInstrumentation called twice");
if (!VAStartInstrumentationList.empty()) {
// If there is a va_start in this function, make a backup copy of
// va_arg_tls somewhere in the function entry block.
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
Value *CopySize =
IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
VAArgOverflowSize);
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
}
Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
// Instrument va_start, copy va_list shadow from the backup copy of
// the TLS contents.
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
CallInst *OrigInst = VAStartInstrumentationList[i];
IRBuilder<> IRB(OrigInst->getNextNode());
Value *VAListTag = OrigInst->getArgOperand(0);
// The variadic ABI for AArch64 creates two areas to save the incoming
// argument registers (one for 64-bit general register xn-x7 and another
// for 128-bit FP/SIMD vn-v7).
// We need then to propagate the shadow arguments on both regions
// 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
// The remaning arguments are saved on shadow for 'va::stack'.
// One caveat is it requires only to propagate the non-named arguments,
// however on the call site instrumentation 'all' the arguments are
// saved. So to copy the shadow values from the va_arg TLS array
// we need to adjust the offset for both GR and VR fields based on
// the __{gr,vr}_offs value (since they are stores based on incoming
// named arguments).
// Read the stack pointer from the va_list.
Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
// Read both the __gr_top and __gr_off and add them up.
Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
// Read both the __vr_top and __vr_off and add them up.
Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
// It does not know how many named arguments is being used and, on the
// callsite all the arguments were saved. Since __gr_off is defined as
// '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
// argument by ignoring the bytes of shadow from named arguments.
Value *GrRegSaveAreaShadowPtrOff =
IRB.CreateAdd(GrArgSize, GrOffSaveArea);
Value *GrRegSaveAreaShadowPtr =
MSV.getShadowPtr(GrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
GrRegSaveAreaShadowPtrOff);
Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, GrSrcPtr, GrCopySize, 8);
// Again, but for FP/SIMD values.
Value *VrRegSaveAreaShadowPtrOff =
IRB.CreateAdd(VrArgSize, VrOffSaveArea);
Value *VrRegSaveAreaShadowPtr =
MSV.getShadowPtr(VrRegSaveAreaPtr, IRB.getInt8Ty(), IRB);
Value *VrSrcPtr = IRB.CreateInBoundsGEP(
IRB.getInt8Ty(),
IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
IRB.getInt32(AArch64VrBegOffset)),
VrRegSaveAreaShadowPtrOff);
Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, VrSrcPtr, VrCopySize, 8);
// And finally for remaining arguments.
Value *StackSaveAreaShadowPtr =
MSV.getShadowPtr(StackSaveAreaPtr, IRB.getInt8Ty(), IRB);
Value *StackSrcPtr =
IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
IRB.getInt32(AArch64VAEndOffset));
IRB.CreateMemCpy(StackSaveAreaShadowPtr, StackSrcPtr,
VAArgOverflowSize, 16);
}
}
};
/// \brief A no-op implementation of VarArgHelper.
struct VarArgNoOpHelper : public VarArgHelper {
VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
MemorySanitizerVisitor &MSV) {}
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
void visitVAStartInst(VAStartInst &I) override {}
void visitVACopyInst(VACopyInst &I) override {}
void finalizeInstrumentation() override {}
};
VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
MemorySanitizerVisitor &Visitor) {
// VarArg handling is only implemented on AMD64. False positives are possible
// on other platforms.
llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
if (TargetTriple.getArch() == llvm::Triple::x86_64)
return new VarArgAMD64Helper(Func, Msan, Visitor);
else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
TargetTriple.getArch() == llvm::Triple::mips64el)
return new VarArgMIPS64Helper(Func, Msan, Visitor);
else if (TargetTriple.getArch() == llvm::Triple::aarch64)
return new VarArgAArch64Helper(Func, Msan, Visitor);
else
return new VarArgNoOpHelper(Func, Msan, Visitor);
}
} // anonymous namespace
bool MemorySanitizer::runOnFunction(Function &F) {
if (&F == MsanCtorFunction)
return false;
MemorySanitizerVisitor Visitor(F, *this);
// Clear out readonly/readnone attributes.
AttrBuilder B;
B.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::ReadNone);
F.removeAttributes(AttributeSet::FunctionIndex,
AttributeSet::get(F.getContext(),
AttributeSet::FunctionIndex, B));
return Visitor.runOnFunction();
}