1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/unittests/Analysis/TFUtilsTest.cpp

145 lines
4.9 KiB
C++
Raw Normal View History

//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
using namespace llvm;
extern const char *TestMainArgv0;
// NOTE! This test model is currently also used by test/Transforms/Inline/ML tests
//- relevant if updating this model.
static std::string getModelPath() {
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
return std::string(InputsDir);
}
// Test observable behavior when no model is provided.
TEST(TFUtilsTest, NoModel) {
TFModelEvaluator Evaluator("", {}, {});
EXPECT_FALSE(Evaluator.isValid());
}
// Test we can correctly load a savedmodel and evaluate it.
TEST(TFUtilsTest, LoadAndExecuteTest) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
const static int64_t KnownSize = 214;
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1", {1, KnownSize})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
EXPECT_TRUE(Evaluator.isValid());
int32_t *V = Evaluator.getInput<int32_t>(0);
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<size_t>(Ret), 80);
EXPECT_EQ(ER->getUntypedTensorValue(0),
reinterpret_cast<const void *>(ER->getTensorValue<float>(0)));
}
// The input vector should be unchanged
for (auto I = 0; I < KnownSize; ++I) {
EXPECT_EQ(V[I], 1);
}
// Zero-out the unused position '0' of the instruction histogram, which is
// after the first 9 calculated values. Should the the same result.
V[9] = 0;
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<size_t>(Ret), 80);
}
}
// Test incorrect input setup
TEST(TFUtilsTest, EvalError) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
const static int64_t KnownSize = 213;
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1", {1, KnownSize})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
EXPECT_TRUE(Evaluator.isValid());
int32_t *V = Evaluator.getInput<int32_t>(0);
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
auto ER = Evaluator.evaluate();
EXPECT_FALSE(ER.hasValue());
EXPECT_FALSE(Evaluator.isValid());
}
TEST(TFUtilsTest, JSONParsing) {
auto Value = json::parse(
R"({"name": "tensor_name",
"port": 2,
"type": "int32_t",
"shape":[1,4]
})");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_TRUE(Spec.hasValue());
EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2));
}
TEST(TFUtilsTest, JSONParsingInvalidTensorType) {
auto Value = json::parse(
R"(
{"name": "tensor_name",
"port": 2,
"type": "no such type",
"shape":[1,4]
}
)");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
auto Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_FALSE(Spec.hasValue());
}
TEST(TFUtilsTest, TensorSpecSizesAndTypes) {
auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1});
auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1});
auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10});
auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10});
EXPECT_TRUE(Spec1D.isElementType<int16_t>());
EXPECT_FALSE(Spec3DLarge.isElementType<double>());
EXPECT_EQ(Spec1D.getElementCount(), 1);
EXPECT_EQ(Spec2D.getElementCount(), 1);
EXPECT_EQ(Spec1DLarge.getElementCount(), 10);
EXPECT_EQ(Spec3DLarge.getElementCount(), 80);
EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float));
EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
}