mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 12:41:49 +01:00
[MemCpyOpt] Fix a variety of scalable-type crashes
This patch fixes a variety of crashes resulting from the `MemCpyOptPass` casting `TypeSize` to a constant integer, whether implicitly or explicitly. Since the `MemsetRanges` requires a constant size to work, all but one of the fixes in this patch simply involve skipping the various optimizations for scalable types as cleanly as possible. The optimization of `byval` parameters, however, has been updated to work on scalable types in theory. In practice, this optimization is only valid when the length of the `memcpy` is known to be larger than the scalable type size, which is currently never the case. This could perhaps be done in the future using the `vscale_range` attribute. Some implicit casts have been left as they were, under the knowledge they are only called on aggregate types. These should never be scalably-sized. Reviewed By: nikic, tra Differential Revision: https://reviews.llvm.org/D109329 (cherry-picked from commit 7fb66d4)
This commit is contained in:
parent
28d769100d
commit
5e5115bbd0
@ -65,7 +65,7 @@ private:
|
||||
bool processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI);
|
||||
bool processMemMove(MemMoveInst *M);
|
||||
bool performCallSlotOptzn(Instruction *cpyLoad, Instruction *cpyStore,
|
||||
Value *cpyDst, Value *cpySrc, uint64_t cpyLen,
|
||||
Value *cpyDst, Value *cpySrc, TypeSize cpyLen,
|
||||
Align cpyAlign, CallInst *C);
|
||||
bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
|
||||
bool processMemSetMemCpyDependence(MemCpyInst *MemCpy, MemSetInst *MemSet);
|
||||
|
@ -178,9 +178,9 @@ public:
|
||||
}
|
||||
|
||||
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
|
||||
int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
|
||||
|
||||
addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
|
||||
TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
|
||||
assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
|
||||
addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
|
||||
SI->getAlign().value(), SI);
|
||||
}
|
||||
|
||||
@ -371,6 +371,11 @@ Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
|
||||
Value *ByteVal) {
|
||||
const DataLayout &DL = StartInst->getModule()->getDataLayout();
|
||||
|
||||
// We can't track scalable types
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(StartInst))
|
||||
if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
|
||||
return nullptr;
|
||||
|
||||
// Okay, so we now have a single store that can be splatable. Scan to find
|
||||
// all subsequent stores of the same value to offset from the same pointer.
|
||||
// Join these together into ranges, so we can decide whether contiguous blocks
|
||||
@ -426,6 +431,10 @@ Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
|
||||
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
|
||||
break;
|
||||
|
||||
// We can't track ranges involving scalable types.
|
||||
if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
|
||||
break;
|
||||
|
||||
// Check to see if this stored value is of the same byte-splattable value.
|
||||
Value *StoredByte = isBytewiseValue(StoredVal, DL);
|
||||
if (isa<UndefValue>(ByteVal) && StoredByte)
|
||||
@ -859,7 +868,7 @@ bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
|
||||
/// the call write its result directly into the destination of the memcpy.
|
||||
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
|
||||
Instruction *cpyStore, Value *cpyDest,
|
||||
Value *cpySrc, uint64_t cpyLen,
|
||||
Value *cpySrc, TypeSize cpySize,
|
||||
Align cpyAlign, CallInst *C) {
|
||||
// The general transformation to keep in mind is
|
||||
//
|
||||
@ -875,6 +884,10 @@ bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
|
||||
// src only holds uninitialized values at the moment of the call, meaning that
|
||||
// the memcpy can be discarded rather than moved.
|
||||
|
||||
// We can't optimize scalable types.
|
||||
if (cpySize.isScalable())
|
||||
return false;
|
||||
|
||||
// Lifetime marks shouldn't be operated on.
|
||||
if (Function *F = C->getCalledFunction())
|
||||
if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
|
||||
@ -893,13 +906,13 @@ bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
|
||||
uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
|
||||
srcArraySize->getZExtValue();
|
||||
|
||||
if (cpyLen < srcSize)
|
||||
if (cpySize < srcSize)
|
||||
return false;
|
||||
|
||||
// Check that accessing the first srcSize bytes of dest will not cause a
|
||||
// trap. Otherwise the transform is invalid since it might cause a trap
|
||||
// to occur earlier than it otherwise would.
|
||||
if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen),
|
||||
if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
|
||||
DL, C, DT))
|
||||
return false;
|
||||
|
||||
@ -1452,9 +1465,10 @@ bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
|
||||
// of conservatively taking the minimum?
|
||||
Align Alignment = std::min(M->getDestAlign().valueOrOne(),
|
||||
M->getSourceAlign().valueOrOne());
|
||||
if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
|
||||
CopySize->getZExtValue(), Alignment,
|
||||
C)) {
|
||||
if (performCallSlotOptzn(
|
||||
M, M, M->getDest(), M->getSource(),
|
||||
TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
|
||||
C)) {
|
||||
LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
|
||||
<< " call: " << *C << "\n"
|
||||
<< " memcpy: " << *M << "\n");
|
||||
@ -1509,7 +1523,8 @@ bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
|
||||
Align Alignment = std::min(M->getDestAlign().valueOrOne(),
|
||||
M->getSourceAlign().valueOrOne());
|
||||
if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
|
||||
CopySize->getZExtValue(), Alignment, C)) {
|
||||
TypeSize::getFixed(CopySize->getZExtValue()),
|
||||
Alignment, C)) {
|
||||
eraseInstruction(M);
|
||||
++NumMemCpyInstr;
|
||||
return true;
|
||||
@ -1584,7 +1599,7 @@ bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
|
||||
// Find out what feeds this byval argument.
|
||||
Value *ByValArg = CB.getArgOperand(ArgNo);
|
||||
Type *ByValTy = CB.getParamByValType(ArgNo);
|
||||
uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
|
||||
TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
|
||||
MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
|
||||
MemCpyInst *MDep = nullptr;
|
||||
if (EnableMemorySSA) {
|
||||
@ -1612,7 +1627,8 @@ bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
|
||||
|
||||
// The length of the memcpy must be larger or equal to the size of the byval.
|
||||
ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
||||
if (!C1 || C1->getValue().getZExtValue() < ByValSize)
|
||||
if (!C1 || !TypeSize::isKnownGE(
|
||||
TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
|
||||
return false;
|
||||
|
||||
// Get the alignment of the byval. If the call doesn't specify the alignment,
|
||||
|
101
test/Transforms/MemCpyOpt/vscale-crashes.ll
Normal file
101
test/Transforms/MemCpyOpt/vscale-crashes.ll
Normal file
@ -0,0 +1,101 @@
|
||||
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
||||
; RUN: opt < %s -memcpyopt -S -verify-memoryssa | FileCheck %s
|
||||
|
||||
; Check that a call featuring a scalable-vector byval argument fed by a memcpy
|
||||
; doesn't crash the compiler. It previously assumed the byval type's size could
|
||||
; be represented as a known constant amount.
|
||||
define void @byval_caller(i8 *%P) {
|
||||
; CHECK-LABEL: @byval_caller(
|
||||
; CHECK-NEXT: [[A:%.*]] = alloca i8, align 1
|
||||
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 [[A]], i8* align 4 [[P:%.*]], i64 8, i1 false)
|
||||
; CHECK-NEXT: [[VA:%.*]] = bitcast i8* [[A]] to <vscale x 1 x i8>*
|
||||
; CHECK-NEXT: call void @byval_callee(<vscale x 1 x i8>* byval(<vscale x 1 x i8>) align 1 [[VA]])
|
||||
; CHECK-NEXT: ret void
|
||||
;
|
||||
%a = alloca i8
|
||||
call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %a, i8* align 4 %P, i64 8, i1 false)
|
||||
%va = bitcast i8* %a to <vscale x 1 x i8>*
|
||||
call void @byval_callee(<vscale x 1 x i8>* align 1 byval(<vscale x 1 x i8>) %va)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4, i8* align 4, i64, i1)
|
||||
declare void @byval_callee(<vscale x 1 x i8>* align 1 byval(<vscale x 1 x i8>))
|
||||
|
||||
; Check that two scalable-vector stores (overlapping, with a constant offset)
|
||||
; do not crash the compiler when checked whether or not they can be merged into
|
||||
; a single memset. There was previously an assumption that the stored values'
|
||||
; sizes could be represented by a known constant amount.
|
||||
define void @merge_stores_both_scalable(<vscale x 1 x i8>* %ptr) {
|
||||
; CHECK-LABEL: @merge_stores_both_scalable(
|
||||
; CHECK-NEXT: store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* [[PTR:%.*]], align 1
|
||||
; CHECK-NEXT: [[PTRI8:%.*]] = bitcast <vscale x 1 x i8>* [[PTR]] to i8*
|
||||
; CHECK-NEXT: [[PTR_NEXT:%.*]] = getelementptr i8, i8* [[PTRI8]], i64 1
|
||||
; CHECK-NEXT: [[PTR_NEXT_2:%.*]] = bitcast i8* [[PTR_NEXT]] to <vscale x 1 x i8>*
|
||||
; CHECK-NEXT: store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* [[PTR_NEXT_2]], align 1
|
||||
; CHECK-NEXT: ret void
|
||||
;
|
||||
store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* %ptr
|
||||
%ptri8 = bitcast <vscale x 1 x i8>* %ptr to i8*
|
||||
%ptr.next = getelementptr i8, i8* %ptri8, i64 1
|
||||
%ptr.next.2 = bitcast i8* %ptr.next to <vscale x 1 x i8>*
|
||||
store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* %ptr.next.2
|
||||
ret void
|
||||
}
|
||||
|
||||
; As above, but where the base is scalable but the subsequent store(s) are not.
|
||||
define void @merge_stores_first_scalable(<vscale x 1 x i8>* %ptr) {
|
||||
; CHECK-LABEL: @merge_stores_first_scalable(
|
||||
; CHECK-NEXT: store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* [[PTR:%.*]], align 1
|
||||
; CHECK-NEXT: [[PTRI8:%.*]] = bitcast <vscale x 1 x i8>* [[PTR]] to i8*
|
||||
; CHECK-NEXT: [[PTR_NEXT:%.*]] = getelementptr i8, i8* [[PTRI8]], i64 1
|
||||
; CHECK-NEXT: store i8 0, i8* [[PTR_NEXT]], align 1
|
||||
; CHECK-NEXT: ret void
|
||||
;
|
||||
store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* %ptr
|
||||
%ptri8 = bitcast <vscale x 1 x i8>* %ptr to i8*
|
||||
%ptr.next = getelementptr i8, i8* %ptri8, i64 1
|
||||
store i8 zeroinitializer, i8* %ptr.next
|
||||
ret void
|
||||
}
|
||||
|
||||
; As above, but where the base is not scalable but the subsequent store(s) are.
|
||||
define void @merge_stores_second_scalable(i8* %ptr) {
|
||||
; CHECK-LABEL: @merge_stores_second_scalable(
|
||||
; CHECK-NEXT: store i8 0, i8* [[PTR:%.*]], align 1
|
||||
; CHECK-NEXT: [[PTR_NEXT:%.*]] = getelementptr i8, i8* [[PTR]], i64 1
|
||||
; CHECK-NEXT: [[PTR_NEXT_2:%.*]] = bitcast i8* [[PTR_NEXT]] to <vscale x 1 x i8>*
|
||||
; CHECK-NEXT: store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* [[PTR_NEXT_2]], align 1
|
||||
; CHECK-NEXT: ret void
|
||||
;
|
||||
store i8 zeroinitializer, i8* %ptr
|
||||
%ptr.next = getelementptr i8, i8* %ptr, i64 1
|
||||
%ptr.next.2 = bitcast i8* %ptr.next to <vscale x 1 x i8>*
|
||||
store <vscale x 1 x i8> zeroinitializer, <vscale x 1 x i8>* %ptr.next.2
|
||||
ret void
|
||||
}
|
||||
|
||||
; Check that the call-slot optimization doesn't crash when encountering scalable types.
|
||||
define void @callslotoptzn(<vscale x 4 x float> %val, <vscale x 4 x float>* %out) {
|
||||
; CHECK-LABEL: @callslotoptzn(
|
||||
; CHECK-NEXT: [[ALLOC:%.*]] = alloca <vscale x 4 x float>, align 16
|
||||
; CHECK-NEXT: [[IDX:%.*]] = tail call <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
|
||||
; CHECK-NEXT: [[BALLOC:%.*]] = getelementptr inbounds <vscale x 4 x float>, <vscale x 4 x float>* [[ALLOC]], i64 0, i64 0
|
||||
; CHECK-NEXT: [[STRIDE:%.*]] = getelementptr inbounds float, float* [[BALLOC]], <vscale x 4 x i32> [[IDX]]
|
||||
; CHECK-NEXT: call void @llvm.masked.scatter.nxv4f32.nxv4p0f32(<vscale x 4 x float> [[VAL:%.*]], <vscale x 4 x float*> [[STRIDE]], i32 4, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i32 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
|
||||
; CHECK-NEXT: [[LI:%.*]] = load <vscale x 4 x float>, <vscale x 4 x float>* [[ALLOC]], align 4
|
||||
; CHECK-NEXT: store <vscale x 4 x float> [[LI]], <vscale x 4 x float>* [[OUT:%.*]], align 4
|
||||
; CHECK-NEXT: ret void
|
||||
;
|
||||
%alloc = alloca <vscale x 4 x float>, align 16
|
||||
%idx = tail call <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
|
||||
%balloc = getelementptr inbounds <vscale x 4 x float>, <vscale x 4 x float>* %alloc, i64 0, i64 0
|
||||
%stride = getelementptr inbounds float, float* %balloc, <vscale x 4 x i32> %idx
|
||||
call void @llvm.masked.scatter.nxv4f32.nxv4p0f32(<vscale x 4 x float> %val, <vscale x 4 x float*> %stride, i32 4, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i32 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
|
||||
%li = load <vscale x 4 x float>, <vscale x 4 x float>* %alloc, align 4
|
||||
store <vscale x 4 x float> %li, <vscale x 4 x float>* %out, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
declare <vscale x 4 x i32> @llvm.experimental.stepvector.nxv4i32()
|
||||
declare void @llvm.masked.scatter.nxv4f32.nxv4p0f32(<vscale x 4 x float> , <vscale x 4 x float*> , i32, <vscale x 4 x i1>)
|
Loading…
x
Reference in New Issue
Block a user