mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 10:42:39 +01:00
5e5115bbd0
This patch fixes a variety of crashes resulting from the `MemCpyOptPass` casting `TypeSize` to a constant integer, whether implicitly or explicitly. Since the `MemsetRanges` requires a constant size to work, all but one of the fixes in this patch simply involve skipping the various optimizations for scalable types as cleanly as possible. The optimization of `byval` parameters, however, has been updated to work on scalable types in theory. In practice, this optimization is only valid when the length of the `memcpy` is known to be larger than the scalable type size, which is currently never the case. This could perhaps be done in the future using the `vscale_range` attribute. Some implicit casts have been left as they were, under the knowledge they are only called on aggregate types. These should never be scalably-sized. Reviewed By: nikic, tra Differential Revision: https://reviews.llvm.org/D109329 (cherry-picked from commit 7fb66d4)
1811 lines
69 KiB
C++
1811 lines
69 KiB
C++
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs various transformations related to eliminating memcpy
|
|
// calls, or transforming sets of stores into memset's.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memcpyopt"
|
|
|
|
static cl::opt<bool>
|
|
EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden,
|
|
cl::desc("Use MemorySSA-backed MemCpyOpt."));
|
|
|
|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
|
|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
|
|
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
|
|
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
|
|
STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
|
|
|
|
namespace {
|
|
|
|
/// Represents a range of memset'd bytes with the ByteVal value.
|
|
/// This allows us to analyze stores like:
|
|
/// store 0 -> P+1
|
|
/// store 0 -> P+0
|
|
/// store 0 -> P+3
|
|
/// store 0 -> P+2
|
|
/// which sometimes happens with stores to arrays of structs etc. When we see
|
|
/// the first store, we make a range [1, 2). The second store extends the range
|
|
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
|
|
/// two ranges into [0, 3) which is memset'able.
|
|
struct MemsetRange {
|
|
// Start/End - A semi range that describes the span that this range covers.
|
|
// The range is closed at the start and open at the end: [Start, End).
|
|
int64_t Start, End;
|
|
|
|
/// StartPtr - The getelementptr instruction that points to the start of the
|
|
/// range.
|
|
Value *StartPtr;
|
|
|
|
/// Alignment - The known alignment of the first store.
|
|
unsigned Alignment;
|
|
|
|
/// TheStores - The actual stores that make up this range.
|
|
SmallVector<Instruction*, 16> TheStores;
|
|
|
|
bool isProfitableToUseMemset(const DataLayout &DL) const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
|
|
// If we found more than 4 stores to merge or 16 bytes, use memset.
|
|
if (TheStores.size() >= 4 || End-Start >= 16) return true;
|
|
|
|
// If there is nothing to merge, don't do anything.
|
|
if (TheStores.size() < 2) return false;
|
|
|
|
// If any of the stores are a memset, then it is always good to extend the
|
|
// memset.
|
|
for (Instruction *SI : TheStores)
|
|
if (!isa<StoreInst>(SI))
|
|
return true;
|
|
|
|
// Assume that the code generator is capable of merging pairs of stores
|
|
// together if it wants to.
|
|
if (TheStores.size() == 2) return false;
|
|
|
|
// If we have fewer than 8 stores, it can still be worthwhile to do this.
|
|
// For example, merging 4 i8 stores into an i32 store is useful almost always.
|
|
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
|
|
// memset will be split into 2 32-bit stores anyway) and doing so can
|
|
// pessimize the llvm optimizer.
|
|
//
|
|
// Since we don't have perfect knowledge here, make some assumptions: assume
|
|
// the maximum GPR width is the same size as the largest legal integer
|
|
// size. If so, check to see whether we will end up actually reducing the
|
|
// number of stores used.
|
|
unsigned Bytes = unsigned(End-Start);
|
|
unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
|
|
if (MaxIntSize == 0)
|
|
MaxIntSize = 1;
|
|
unsigned NumPointerStores = Bytes / MaxIntSize;
|
|
|
|
// Assume the remaining bytes if any are done a byte at a time.
|
|
unsigned NumByteStores = Bytes % MaxIntSize;
|
|
|
|
// If we will reduce the # stores (according to this heuristic), do the
|
|
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
|
|
// etc.
|
|
return TheStores.size() > NumPointerStores+NumByteStores;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class MemsetRanges {
|
|
using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
|
|
|
|
/// A sorted list of the memset ranges.
|
|
SmallVector<MemsetRange, 8> Ranges;
|
|
|
|
const DataLayout &DL;
|
|
|
|
public:
|
|
MemsetRanges(const DataLayout &DL) : DL(DL) {}
|
|
|
|
using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
|
|
|
|
const_iterator begin() const { return Ranges.begin(); }
|
|
const_iterator end() const { return Ranges.end(); }
|
|
bool empty() const { return Ranges.empty(); }
|
|
|
|
void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
addStore(OffsetFromFirst, SI);
|
|
else
|
|
addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
|
|
}
|
|
|
|
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
|
|
TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
|
|
assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
|
|
addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
|
|
SI->getAlign().value(), SI);
|
|
}
|
|
|
|
void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
|
|
int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
|
addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
|
|
}
|
|
|
|
void addRange(int64_t Start, int64_t Size, Value *Ptr,
|
|
unsigned Alignment, Instruction *Inst);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Add a new store to the MemsetRanges data structure. This adds a
|
|
/// new range for the specified store at the specified offset, merging into
|
|
/// existing ranges as appropriate.
|
|
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
|
|
unsigned Alignment, Instruction *Inst) {
|
|
int64_t End = Start+Size;
|
|
|
|
range_iterator I = partition_point(
|
|
Ranges, [=](const MemsetRange &O) { return O.End < Start; });
|
|
|
|
// We now know that I == E, in which case we didn't find anything to merge
|
|
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
|
|
// to insert a new range. Handle this now.
|
|
if (I == Ranges.end() || End < I->Start) {
|
|
MemsetRange &R = *Ranges.insert(I, MemsetRange());
|
|
R.Start = Start;
|
|
R.End = End;
|
|
R.StartPtr = Ptr;
|
|
R.Alignment = Alignment;
|
|
R.TheStores.push_back(Inst);
|
|
return;
|
|
}
|
|
|
|
// This store overlaps with I, add it.
|
|
I->TheStores.push_back(Inst);
|
|
|
|
// At this point, we may have an interval that completely contains our store.
|
|
// If so, just add it to the interval and return.
|
|
if (I->Start <= Start && I->End >= End)
|
|
return;
|
|
|
|
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
|
|
// but is not entirely contained within the range.
|
|
|
|
// See if the range extends the start of the range. In this case, it couldn't
|
|
// possibly cause it to join the prior range, because otherwise we would have
|
|
// stopped on *it*.
|
|
if (Start < I->Start) {
|
|
I->Start = Start;
|
|
I->StartPtr = Ptr;
|
|
I->Alignment = Alignment;
|
|
}
|
|
|
|
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
|
|
// is in or right at the end of I), and that End >= I->Start. Extend I out to
|
|
// End.
|
|
if (End > I->End) {
|
|
I->End = End;
|
|
range_iterator NextI = I;
|
|
while (++NextI != Ranges.end() && End >= NextI->Start) {
|
|
// Merge the range in.
|
|
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
|
|
if (NextI->End > I->End)
|
|
I->End = NextI->End;
|
|
Ranges.erase(NextI);
|
|
NextI = I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MemCpyOptLegacyPass Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class MemCpyOptLegacyPass : public FunctionPass {
|
|
MemCpyOptPass Impl;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
MemCpyOptLegacyPass() : FunctionPass(ID) {
|
|
initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// This transformation requires dominator postdominator info
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
if (!EnableMemorySSA)
|
|
AU.addRequired<MemoryDependenceWrapperPass>();
|
|
AU.addPreserved<MemoryDependenceWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
if (EnableMemorySSA)
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MemCpyOptLegacyPass::ID = 0;
|
|
|
|
/// The public interface to this file...
|
|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
|
|
false, false)
|
|
|
|
// Check that V is either not accessible by the caller, or unwinding cannot
|
|
// occur between Start and End.
|
|
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
|
|
Instruction *End) {
|
|
assert(Start->getParent() == End->getParent() && "Must be in same block");
|
|
if (!Start->getFunction()->doesNotThrow() &&
|
|
!isa<AllocaInst>(getUnderlyingObject(V))) {
|
|
for (const Instruction &I :
|
|
make_range(Start->getIterator(), End->getIterator())) {
|
|
if (I.mayThrow())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void MemCpyOptPass::eraseInstruction(Instruction *I) {
|
|
if (MSSAU)
|
|
MSSAU->removeMemoryAccess(I);
|
|
if (MD)
|
|
MD->removeInstruction(I);
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
// Check for mod or ref of Loc between Start and End, excluding both boundaries.
|
|
// Start and End must be in the same block
|
|
static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
|
|
const MemoryUseOrDef *Start,
|
|
const MemoryUseOrDef *End) {
|
|
assert(Start->getBlock() == End->getBlock() && "Only local supported");
|
|
for (const MemoryAccess &MA :
|
|
make_range(++Start->getIterator(), End->getIterator())) {
|
|
if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
|
|
Loc)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check for mod of Loc between Start and End, excluding both boundaries.
|
|
// Start and End can be in different blocks.
|
|
static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
|
|
const MemoryUseOrDef *Start,
|
|
const MemoryUseOrDef *End) {
|
|
// TODO: Only walk until we hit Start.
|
|
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
End->getDefiningAccess(), Loc);
|
|
return !MSSA->dominates(Clobber, Start);
|
|
}
|
|
|
|
/// When scanning forward over instructions, we look for some other patterns to
|
|
/// fold away. In particular, this looks for stores to neighboring locations of
|
|
/// memory. If it sees enough consecutive ones, it attempts to merge them
|
|
/// together into a memcpy/memset.
|
|
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
|
|
Value *StartPtr,
|
|
Value *ByteVal) {
|
|
const DataLayout &DL = StartInst->getModule()->getDataLayout();
|
|
|
|
// We can't track scalable types
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(StartInst))
|
|
if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
|
|
return nullptr;
|
|
|
|
// Okay, so we now have a single store that can be splatable. Scan to find
|
|
// all subsequent stores of the same value to offset from the same pointer.
|
|
// Join these together into ranges, so we can decide whether contiguous blocks
|
|
// are stored.
|
|
MemsetRanges Ranges(DL);
|
|
|
|
BasicBlock::iterator BI(StartInst);
|
|
|
|
// Keeps track of the last memory use or def before the insertion point for
|
|
// the new memset. The new MemoryDef for the inserted memsets will be inserted
|
|
// after MemInsertPoint. It points to either LastMemDef or to the last user
|
|
// before the insertion point of the memset, if there are any such users.
|
|
MemoryUseOrDef *MemInsertPoint = nullptr;
|
|
// Keeps track of the last MemoryDef between StartInst and the insertion point
|
|
// for the new memset. This will become the defining access of the inserted
|
|
// memsets.
|
|
MemoryDef *LastMemDef = nullptr;
|
|
for (++BI; !BI->isTerminator(); ++BI) {
|
|
if (MSSAU) {
|
|
auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
|
|
MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
|
|
if (CurrentAcc) {
|
|
MemInsertPoint = CurrentAcc;
|
|
if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
|
|
LastMemDef = CurrentDef;
|
|
}
|
|
}
|
|
|
|
// Calls that only access inaccessible memory do not block merging
|
|
// accessible stores.
|
|
if (auto *CB = dyn_cast<CallBase>(BI)) {
|
|
if (CB->onlyAccessesInaccessibleMemory())
|
|
continue;
|
|
}
|
|
|
|
if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
|
|
// If the instruction is readnone, ignore it, otherwise bail out. We
|
|
// don't even allow readonly here because we don't want something like:
|
|
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
|
|
if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
|
|
// If this is a store, see if we can merge it in.
|
|
if (!NextStore->isSimple()) break;
|
|
|
|
Value *StoredVal = NextStore->getValueOperand();
|
|
|
|
// Don't convert stores of non-integral pointer types to memsets (which
|
|
// stores integers).
|
|
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
|
|
break;
|
|
|
|
// We can't track ranges involving scalable types.
|
|
if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
|
|
break;
|
|
|
|
// Check to see if this stored value is of the same byte-splattable value.
|
|
Value *StoredByte = isBytewiseValue(StoredVal, DL);
|
|
if (isa<UndefValue>(ByteVal) && StoredByte)
|
|
ByteVal = StoredByte;
|
|
if (ByteVal != StoredByte)
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
Optional<int64_t> Offset =
|
|
isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
|
|
if (!Offset)
|
|
break;
|
|
|
|
Ranges.addStore(*Offset, NextStore);
|
|
} else {
|
|
MemSetInst *MSI = cast<MemSetInst>(BI);
|
|
|
|
if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
|
|
!isa<ConstantInt>(MSI->getLength()))
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
|
|
if (!Offset)
|
|
break;
|
|
|
|
Ranges.addMemSet(*Offset, MSI);
|
|
}
|
|
}
|
|
|
|
// If we have no ranges, then we just had a single store with nothing that
|
|
// could be merged in. This is a very common case of course.
|
|
if (Ranges.empty())
|
|
return nullptr;
|
|
|
|
// If we had at least one store that could be merged in, add the starting
|
|
// store as well. We try to avoid this unless there is at least something
|
|
// interesting as a small compile-time optimization.
|
|
Ranges.addInst(0, StartInst);
|
|
|
|
// If we create any memsets, we put it right before the first instruction that
|
|
// isn't part of the memset block. This ensure that the memset is dominated
|
|
// by any addressing instruction needed by the start of the block.
|
|
IRBuilder<> Builder(&*BI);
|
|
|
|
// Now that we have full information about ranges, loop over the ranges and
|
|
// emit memset's for anything big enough to be worthwhile.
|
|
Instruction *AMemSet = nullptr;
|
|
for (const MemsetRange &Range : Ranges) {
|
|
if (Range.TheStores.size() == 1) continue;
|
|
|
|
// If it is profitable to lower this range to memset, do so now.
|
|
if (!Range.isProfitableToUseMemset(DL))
|
|
continue;
|
|
|
|
// Otherwise, we do want to transform this! Create a new memset.
|
|
// Get the starting pointer of the block.
|
|
StartPtr = Range.StartPtr;
|
|
|
|
AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
|
|
MaybeAlign(Range.Alignment));
|
|
LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
|
|
: Range.TheStores) dbgs()
|
|
<< *SI << '\n';
|
|
dbgs() << "With: " << *AMemSet << '\n');
|
|
if (!Range.TheStores.empty())
|
|
AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
|
|
|
|
if (MSSAU) {
|
|
assert(LastMemDef && MemInsertPoint &&
|
|
"Both LastMemDef and MemInsertPoint need to be set");
|
|
auto *NewDef =
|
|
cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
|
|
? MSSAU->createMemoryAccessBefore(
|
|
AMemSet, LastMemDef, MemInsertPoint)
|
|
: MSSAU->createMemoryAccessAfter(
|
|
AMemSet, LastMemDef, MemInsertPoint));
|
|
MSSAU->insertDef(NewDef, /*RenameUses=*/true);
|
|
LastMemDef = NewDef;
|
|
MemInsertPoint = NewDef;
|
|
}
|
|
|
|
// Zap all the stores.
|
|
for (Instruction *SI : Range.TheStores)
|
|
eraseInstruction(SI);
|
|
|
|
++NumMemSetInfer;
|
|
}
|
|
|
|
return AMemSet;
|
|
}
|
|
|
|
// This method try to lift a store instruction before position P.
|
|
// It will lift the store and its argument + that anything that
|
|
// may alias with these.
|
|
// The method returns true if it was successful.
|
|
bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
|
|
// If the store alias this position, early bail out.
|
|
MemoryLocation StoreLoc = MemoryLocation::get(SI);
|
|
if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
|
|
return false;
|
|
|
|
// Keep track of the arguments of all instruction we plan to lift
|
|
// so we can make sure to lift them as well if appropriate.
|
|
DenseSet<Instruction*> Args;
|
|
if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
|
|
if (Ptr->getParent() == SI->getParent())
|
|
Args.insert(Ptr);
|
|
|
|
// Instruction to lift before P.
|
|
SmallVector<Instruction *, 8> ToLift{SI};
|
|
|
|
// Memory locations of lifted instructions.
|
|
SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
|
|
|
|
// Lifted calls.
|
|
SmallVector<const CallBase *, 8> Calls;
|
|
|
|
const MemoryLocation LoadLoc = MemoryLocation::get(LI);
|
|
|
|
for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
|
|
auto *C = &*I;
|
|
|
|
// Make sure hoisting does not perform a store that was not guaranteed to
|
|
// happen.
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(C))
|
|
return false;
|
|
|
|
bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
|
|
|
|
bool NeedLift = false;
|
|
if (Args.erase(C))
|
|
NeedLift = true;
|
|
else if (MayAlias) {
|
|
NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
|
|
return isModOrRefSet(AA->getModRefInfo(C, ML));
|
|
});
|
|
|
|
if (!NeedLift)
|
|
NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
|
|
return isModOrRefSet(AA->getModRefInfo(C, Call));
|
|
});
|
|
}
|
|
|
|
if (!NeedLift)
|
|
continue;
|
|
|
|
if (MayAlias) {
|
|
// Since LI is implicitly moved downwards past the lifted instructions,
|
|
// none of them may modify its source.
|
|
if (isModSet(AA->getModRefInfo(C, LoadLoc)))
|
|
return false;
|
|
else if (const auto *Call = dyn_cast<CallBase>(C)) {
|
|
// If we can't lift this before P, it's game over.
|
|
if (isModOrRefSet(AA->getModRefInfo(P, Call)))
|
|
return false;
|
|
|
|
Calls.push_back(Call);
|
|
} else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
|
|
// If we can't lift this before P, it's game over.
|
|
auto ML = MemoryLocation::get(C);
|
|
if (isModOrRefSet(AA->getModRefInfo(P, ML)))
|
|
return false;
|
|
|
|
MemLocs.push_back(ML);
|
|
} else
|
|
// We don't know how to lift this instruction.
|
|
return false;
|
|
}
|
|
|
|
ToLift.push_back(C);
|
|
for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
|
|
if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
|
|
if (A->getParent() == SI->getParent()) {
|
|
// Cannot hoist user of P above P
|
|
if(A == P) return false;
|
|
Args.insert(A);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find MSSA insertion point. Normally P will always have a corresponding
|
|
// memory access before which we can insert. However, with non-standard AA
|
|
// pipelines, there may be a mismatch between AA and MSSA, in which case we
|
|
// will scan for a memory access before P. In either case, we know for sure
|
|
// that at least the load will have a memory access.
|
|
// TODO: Simplify this once P will be determined by MSSA, in which case the
|
|
// discrepancy can no longer occur.
|
|
MemoryUseOrDef *MemInsertPoint = nullptr;
|
|
if (MSSAU) {
|
|
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
|
|
MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
|
|
} else {
|
|
const Instruction *ConstP = P;
|
|
for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
|
|
++LI->getReverseIterator())) {
|
|
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
|
|
MemInsertPoint = MA;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We made it, we need to lift.
|
|
for (auto *I : llvm::reverse(ToLift)) {
|
|
LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
|
|
I->moveBefore(P);
|
|
if (MSSAU) {
|
|
assert(MemInsertPoint && "Must have found insert point");
|
|
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
|
|
MSSAU->moveAfter(MA, MemInsertPoint);
|
|
MemInsertPoint = MA;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
|
|
if (!SI->isSimple()) return false;
|
|
|
|
// Avoid merging nontemporal stores since the resulting
|
|
// memcpy/memset would not be able to preserve the nontemporal hint.
|
|
// In theory we could teach how to propagate the !nontemporal metadata to
|
|
// memset calls. However, that change would force the backend to
|
|
// conservatively expand !nontemporal memset calls back to sequences of
|
|
// store instructions (effectively undoing the merging).
|
|
if (SI->getMetadata(LLVMContext::MD_nontemporal))
|
|
return false;
|
|
|
|
const DataLayout &DL = SI->getModule()->getDataLayout();
|
|
|
|
Value *StoredVal = SI->getValueOperand();
|
|
|
|
// Not all the transforms below are correct for non-integral pointers, bail
|
|
// until we've audited the individual pieces.
|
|
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
|
|
return false;
|
|
|
|
// Load to store forwarding can be interpreted as memcpy.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
|
|
if (LI->isSimple() && LI->hasOneUse() &&
|
|
LI->getParent() == SI->getParent()) {
|
|
|
|
auto *T = LI->getType();
|
|
if (T->isAggregateType()) {
|
|
MemoryLocation LoadLoc = MemoryLocation::get(LI);
|
|
|
|
// We use alias analysis to check if an instruction may store to
|
|
// the memory we load from in between the load and the store. If
|
|
// such an instruction is found, we try to promote there instead
|
|
// of at the store position.
|
|
// TODO: Can use MSSA for this.
|
|
Instruction *P = SI;
|
|
for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
|
|
if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
|
|
P = &I;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We found an instruction that may write to the loaded memory.
|
|
// We can try to promote at this position instead of the store
|
|
// position if nothing aliases the store memory after this and the store
|
|
// destination is not in the range.
|
|
if (P && P != SI) {
|
|
if (!moveUp(SI, P, LI))
|
|
P = nullptr;
|
|
}
|
|
|
|
// If a valid insertion position is found, then we can promote
|
|
// the load/store pair to a memcpy.
|
|
if (P) {
|
|
// If we load from memory that may alias the memory we store to,
|
|
// memmove must be used to preserve semantic. If not, memcpy can
|
|
// be used.
|
|
bool UseMemMove = false;
|
|
if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
|
|
UseMemMove = true;
|
|
|
|
uint64_t Size = DL.getTypeStoreSize(T);
|
|
|
|
IRBuilder<> Builder(P);
|
|
Instruction *M;
|
|
if (UseMemMove)
|
|
M = Builder.CreateMemMove(
|
|
SI->getPointerOperand(), SI->getAlign(),
|
|
LI->getPointerOperand(), LI->getAlign(), Size);
|
|
else
|
|
M = Builder.CreateMemCpy(
|
|
SI->getPointerOperand(), SI->getAlign(),
|
|
LI->getPointerOperand(), LI->getAlign(), Size);
|
|
|
|
LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
|
|
<< *M << "\n");
|
|
|
|
if (MSSAU) {
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
|
|
auto *NewAccess =
|
|
MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
}
|
|
|
|
eraseInstruction(SI);
|
|
eraseInstruction(LI);
|
|
++NumMemCpyInstr;
|
|
|
|
// Make sure we do not invalidate the iterator.
|
|
BBI = M->getIterator();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Detect cases where we're performing call slot forwarding, but
|
|
// happen to be using a load-store pair to implement it, rather than
|
|
// a memcpy.
|
|
CallInst *C = nullptr;
|
|
if (EnableMemorySSA) {
|
|
if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
|
|
MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
|
|
// The load most post-dom the call. Limit to the same block for now.
|
|
// TODO: Support non-local call-slot optimization?
|
|
if (LoadClobber->getBlock() == SI->getParent())
|
|
C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
|
|
}
|
|
} else {
|
|
MemDepResult ldep = MD->getDependency(LI);
|
|
if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
|
|
C = dyn_cast<CallInst>(ldep.getInst());
|
|
}
|
|
|
|
if (C) {
|
|
// Check that nothing touches the dest of the "copy" between
|
|
// the call and the store.
|
|
MemoryLocation StoreLoc = MemoryLocation::get(SI);
|
|
if (EnableMemorySSA) {
|
|
if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
|
|
MSSA->getMemoryAccess(SI)))
|
|
C = nullptr;
|
|
} else {
|
|
for (BasicBlock::iterator I = --SI->getIterator(),
|
|
E = C->getIterator();
|
|
I != E; --I) {
|
|
if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
|
|
C = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (C) {
|
|
bool changed = performCallSlotOptzn(
|
|
LI, SI, SI->getPointerOperand()->stripPointerCasts(),
|
|
LI->getPointerOperand()->stripPointerCasts(),
|
|
DL.getTypeStoreSize(SI->getOperand(0)->getType()),
|
|
commonAlignment(SI->getAlign(), LI->getAlign()), C);
|
|
if (changed) {
|
|
eraseInstruction(SI);
|
|
eraseInstruction(LI);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// There are two cases that are interesting for this code to handle: memcpy
|
|
// and memset. Right now we only handle memset.
|
|
|
|
// Ensure that the value being stored is something that can be memset'able a
|
|
// byte at a time like "0" or "-1" or any width, as well as things like
|
|
// 0xA0A0A0A0 and 0.0.
|
|
auto *V = SI->getOperand(0);
|
|
if (Value *ByteVal = isBytewiseValue(V, DL)) {
|
|
if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
|
|
ByteVal)) {
|
|
BBI = I->getIterator(); // Don't invalidate iterator.
|
|
return true;
|
|
}
|
|
|
|
// If we have an aggregate, we try to promote it to memset regardless
|
|
// of opportunity for merging as it can expose optimization opportunities
|
|
// in subsequent passes.
|
|
auto *T = V->getType();
|
|
if (T->isAggregateType()) {
|
|
uint64_t Size = DL.getTypeStoreSize(T);
|
|
IRBuilder<> Builder(SI);
|
|
auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
|
|
SI->getAlign());
|
|
|
|
LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
|
|
|
|
if (MSSAU) {
|
|
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
|
|
auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
}
|
|
|
|
eraseInstruction(SI);
|
|
NumMemSetInfer++;
|
|
|
|
// Make sure we do not invalidate the iterator.
|
|
BBI = M->getIterator();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
|
|
// See if there is another memset or store neighboring this memset which
|
|
// allows us to widen out the memset to do a single larger store.
|
|
if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
|
|
if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
|
|
MSI->getValue())) {
|
|
BBI = I->getIterator(); // Don't invalidate iterator.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Takes a memcpy and a call that it depends on,
|
|
/// and checks for the possibility of a call slot optimization by having
|
|
/// the call write its result directly into the destination of the memcpy.
|
|
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
|
|
Instruction *cpyStore, Value *cpyDest,
|
|
Value *cpySrc, TypeSize cpySize,
|
|
Align cpyAlign, CallInst *C) {
|
|
// The general transformation to keep in mind is
|
|
//
|
|
// call @func(..., src, ...)
|
|
// memcpy(dest, src, ...)
|
|
//
|
|
// ->
|
|
//
|
|
// memcpy(dest, src, ...)
|
|
// call @func(..., dest, ...)
|
|
//
|
|
// Since moving the memcpy is technically awkward, we additionally check that
|
|
// src only holds uninitialized values at the moment of the call, meaning that
|
|
// the memcpy can be discarded rather than moved.
|
|
|
|
// We can't optimize scalable types.
|
|
if (cpySize.isScalable())
|
|
return false;
|
|
|
|
// Lifetime marks shouldn't be operated on.
|
|
if (Function *F = C->getCalledFunction())
|
|
if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
|
|
return false;
|
|
|
|
// Require that src be an alloca. This simplifies the reasoning considerably.
|
|
AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
|
if (!srcAlloca)
|
|
return false;
|
|
|
|
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
|
if (!srcArraySize)
|
|
return false;
|
|
|
|
const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
|
|
uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
|
|
srcArraySize->getZExtValue();
|
|
|
|
if (cpySize < srcSize)
|
|
return false;
|
|
|
|
// Check that accessing the first srcSize bytes of dest will not cause a
|
|
// trap. Otherwise the transform is invalid since it might cause a trap
|
|
// to occur earlier than it otherwise would.
|
|
if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
|
|
DL, C, DT))
|
|
return false;
|
|
|
|
// Make sure that nothing can observe cpyDest being written early. There are
|
|
// a number of cases to consider:
|
|
// 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
|
|
// the transform.
|
|
// 2. C itself may not access cpyDest (prior to the transform). This is
|
|
// checked further below.
|
|
// 3. If cpyDest is accessible to the caller of this function (potentially
|
|
// captured and not based on an alloca), we need to ensure that we cannot
|
|
// unwind between C and cpyStore. This is checked here.
|
|
// 4. If cpyDest is potentially captured, there may be accesses to it from
|
|
// another thread. In this case, we need to check that cpyStore is
|
|
// guaranteed to be executed if C is. As it is a non-atomic access, it
|
|
// renders accesses from other threads undefined.
|
|
// TODO: This is currently not checked.
|
|
if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
|
|
return false;
|
|
|
|
// Check that dest points to memory that is at least as aligned as src.
|
|
Align srcAlign = srcAlloca->getAlign();
|
|
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
|
|
// If dest is not aligned enough and we can't increase its alignment then
|
|
// bail out.
|
|
if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
|
|
return false;
|
|
|
|
// Check that src is not accessed except via the call and the memcpy. This
|
|
// guarantees that it holds only undefined values when passed in (so the final
|
|
// memcpy can be dropped), that it is not read or written between the call and
|
|
// the memcpy, and that writing beyond the end of it is undefined.
|
|
SmallVector<User *, 8> srcUseList(srcAlloca->users());
|
|
while (!srcUseList.empty()) {
|
|
User *U = srcUseList.pop_back_val();
|
|
|
|
if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
|
|
append_range(srcUseList, U->users());
|
|
continue;
|
|
}
|
|
if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
|
|
if (!G->hasAllZeroIndices())
|
|
return false;
|
|
|
|
append_range(srcUseList, U->users());
|
|
continue;
|
|
}
|
|
if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
|
|
if (IT->isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
if (U != C && U != cpyLoad)
|
|
return false;
|
|
}
|
|
|
|
// Check that src isn't captured by the called function since the
|
|
// transformation can cause aliasing issues in that case.
|
|
for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
|
|
if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
|
|
return false;
|
|
|
|
// Since we're changing the parameter to the callsite, we need to make sure
|
|
// that what would be the new parameter dominates the callsite.
|
|
if (!DT->dominates(cpyDest, C)) {
|
|
// Support moving a constant index GEP before the call.
|
|
auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
|
|
if (GEP && GEP->hasAllConstantIndices() &&
|
|
DT->dominates(GEP->getPointerOperand(), C))
|
|
GEP->moveBefore(C);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// In addition to knowing that the call does not access src in some
|
|
// unexpected manner, for example via a global, which we deduce from
|
|
// the use analysis, we also need to know that it does not sneakily
|
|
// access dest. We rely on AA to figure this out for us.
|
|
ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
|
|
// If necessary, perform additional analysis.
|
|
if (isModOrRefSet(MR))
|
|
MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
|
|
if (isModOrRefSet(MR))
|
|
return false;
|
|
|
|
// We can't create address space casts here because we don't know if they're
|
|
// safe for the target.
|
|
if (cpySrc->getType()->getPointerAddressSpace() !=
|
|
cpyDest->getType()->getPointerAddressSpace())
|
|
return false;
|
|
for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
|
|
if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
|
|
cpySrc->getType()->getPointerAddressSpace() !=
|
|
C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
|
|
return false;
|
|
|
|
// All the checks have passed, so do the transformation.
|
|
bool changedArgument = false;
|
|
for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
|
|
if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
|
|
Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
|
|
: CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
|
|
cpyDest->getName(), C);
|
|
changedArgument = true;
|
|
if (C->getArgOperand(ArgI)->getType() == Dest->getType())
|
|
C->setArgOperand(ArgI, Dest);
|
|
else
|
|
C->setArgOperand(ArgI, CastInst::CreatePointerCast(
|
|
Dest, C->getArgOperand(ArgI)->getType(),
|
|
Dest->getName(), C));
|
|
}
|
|
|
|
if (!changedArgument)
|
|
return false;
|
|
|
|
// If the destination wasn't sufficiently aligned then increase its alignment.
|
|
if (!isDestSufficientlyAligned) {
|
|
assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
|
|
cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
|
|
}
|
|
|
|
// Drop any cached information about the call, because we may have changed
|
|
// its dependence information by changing its parameter.
|
|
if (MD)
|
|
MD->removeInstruction(C);
|
|
|
|
// Update AA metadata
|
|
// FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
|
|
// handled here, but combineMetadata doesn't support them yet
|
|
unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias,
|
|
LLVMContext::MD_invariant_group,
|
|
LLVMContext::MD_access_group};
|
|
combineMetadata(C, cpyLoad, KnownIDs, true);
|
|
|
|
++NumCallSlot;
|
|
return true;
|
|
}
|
|
|
|
/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
|
|
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
|
|
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
|
|
MemCpyInst *MDep) {
|
|
// We can only transforms memcpy's where the dest of one is the source of the
|
|
// other.
|
|
if (M->getSource() != MDep->getDest() || MDep->isVolatile())
|
|
return false;
|
|
|
|
// If dep instruction is reading from our current input, then it is a noop
|
|
// transfer and substituting the input won't change this instruction. Just
|
|
// ignore the input and let someone else zap MDep. This handles cases like:
|
|
// memcpy(a <- a)
|
|
// memcpy(b <- a)
|
|
if (M->getSource() == MDep->getSource())
|
|
return false;
|
|
|
|
// Second, the length of the memcpy's must be the same, or the preceding one
|
|
// must be larger than the following one.
|
|
if (MDep->getLength() != M->getLength()) {
|
|
ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
|
|
ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
|
|
if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
|
|
return false;
|
|
}
|
|
|
|
// Verify that the copied-from memory doesn't change in between the two
|
|
// transfers. For example, in:
|
|
// memcpy(a <- b)
|
|
// *b = 42;
|
|
// memcpy(c <- a)
|
|
// It would be invalid to transform the second memcpy into memcpy(c <- b).
|
|
//
|
|
// TODO: If the code between M and MDep is transparent to the destination "c",
|
|
// then we could still perform the xform by moving M up to the first memcpy.
|
|
if (EnableMemorySSA) {
|
|
// TODO: It would be sufficient to check the MDep source up to the memcpy
|
|
// size of M, rather than MDep.
|
|
if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
|
|
MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
|
|
return false;
|
|
} else {
|
|
// NOTE: This is conservative, it will stop on any read from the source loc,
|
|
// not just the defining memcpy.
|
|
MemDepResult SourceDep =
|
|
MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
|
|
M->getIterator(), M->getParent());
|
|
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
|
|
return false;
|
|
}
|
|
|
|
// If the dest of the second might alias the source of the first, then the
|
|
// source and dest might overlap. We still want to eliminate the intermediate
|
|
// value, but we have to generate a memmove instead of memcpy.
|
|
bool UseMemMove = false;
|
|
if (!AA->isNoAlias(MemoryLocation::getForDest(M),
|
|
MemoryLocation::getForSource(MDep)))
|
|
UseMemMove = true;
|
|
|
|
// If all checks passed, then we can transform M.
|
|
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
|
|
<< *MDep << '\n' << *M << '\n');
|
|
|
|
// TODO: Is this worth it if we're creating a less aligned memcpy? For
|
|
// example we could be moving from movaps -> movq on x86.
|
|
IRBuilder<> Builder(M);
|
|
Instruction *NewM;
|
|
if (UseMemMove)
|
|
NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
|
|
MDep->getRawSource(), MDep->getSourceAlign(),
|
|
M->getLength(), M->isVolatile());
|
|
else if (isa<MemCpyInlineInst>(M)) {
|
|
// llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
|
|
// never allowed since that would allow the latter to be lowered as a call
|
|
// to an external function.
|
|
NewM = Builder.CreateMemCpyInline(
|
|
M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
|
|
MDep->getSourceAlign(), M->getLength(), M->isVolatile());
|
|
} else
|
|
NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
|
|
MDep->getRawSource(), MDep->getSourceAlign(),
|
|
M->getLength(), M->isVolatile());
|
|
|
|
if (MSSAU) {
|
|
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
|
|
auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
|
|
auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
}
|
|
|
|
// Remove the instruction we're replacing.
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
|
|
/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
|
|
/// weren't copied over by \p MemCpy.
|
|
///
|
|
/// In other words, transform:
|
|
/// \code
|
|
/// memset(dst, c, dst_size);
|
|
/// memcpy(dst, src, src_size);
|
|
/// \endcode
|
|
/// into:
|
|
/// \code
|
|
/// memcpy(dst, src, src_size);
|
|
/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
|
|
/// \endcode
|
|
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
|
|
MemSetInst *MemSet) {
|
|
// We can only transform memset/memcpy with the same destination.
|
|
if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
|
|
return false;
|
|
|
|
// Check that src and dst of the memcpy aren't the same. While memcpy
|
|
// operands cannot partially overlap, exact equality is allowed.
|
|
if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
|
|
LocationSize::precise(1)),
|
|
MemoryLocation(MemCpy->getDest(),
|
|
LocationSize::precise(1))))
|
|
return false;
|
|
|
|
if (EnableMemorySSA) {
|
|
// We know that dst up to src_size is not written. We now need to make sure
|
|
// that dst up to dst_size is not accessed. (If we did not move the memset,
|
|
// checking for reads would be sufficient.)
|
|
if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
|
|
MSSA->getMemoryAccess(MemSet),
|
|
MSSA->getMemoryAccess(MemCpy))) {
|
|
return false;
|
|
}
|
|
} else {
|
|
// We have already checked that dst up to src_size is not accessed. We
|
|
// need to make sure that there are no accesses up to dst_size either.
|
|
MemDepResult DstDepInfo = MD->getPointerDependencyFrom(
|
|
MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(),
|
|
MemCpy->getParent());
|
|
if (DstDepInfo.getInst() != MemSet)
|
|
return false;
|
|
}
|
|
|
|
// Use the same i8* dest as the memcpy, killing the memset dest if different.
|
|
Value *Dest = MemCpy->getRawDest();
|
|
Value *DestSize = MemSet->getLength();
|
|
Value *SrcSize = MemCpy->getLength();
|
|
|
|
if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
|
|
return false;
|
|
|
|
// If the sizes are the same, simply drop the memset instead of generating
|
|
// a replacement with zero size.
|
|
if (DestSize == SrcSize) {
|
|
eraseInstruction(MemSet);
|
|
return true;
|
|
}
|
|
|
|
// By default, create an unaligned memset.
|
|
unsigned Align = 1;
|
|
// If Dest is aligned, and SrcSize is constant, use the minimum alignment
|
|
// of the sum.
|
|
const unsigned DestAlign =
|
|
std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
|
|
if (DestAlign > 1)
|
|
if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
|
|
Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
|
|
|
|
IRBuilder<> Builder(MemCpy);
|
|
|
|
// If the sizes have different types, zext the smaller one.
|
|
if (DestSize->getType() != SrcSize->getType()) {
|
|
if (DestSize->getType()->getIntegerBitWidth() >
|
|
SrcSize->getType()->getIntegerBitWidth())
|
|
SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
|
|
else
|
|
DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
|
|
}
|
|
|
|
Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
|
|
Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
|
|
Value *MemsetLen = Builder.CreateSelect(
|
|
Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
|
|
unsigned DestAS = Dest->getType()->getPointerAddressSpace();
|
|
Instruction *NewMemSet = Builder.CreateMemSet(
|
|
Builder.CreateGEP(Builder.getInt8Ty(),
|
|
Builder.CreatePointerCast(Dest,
|
|
Builder.getInt8PtrTy(DestAS)),
|
|
SrcSize),
|
|
MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
|
|
|
|
if (MSSAU) {
|
|
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
|
|
"MemCpy must be a MemoryDef");
|
|
// The new memset is inserted after the memcpy, but it is known that its
|
|
// defining access is the memset about to be removed which immediately
|
|
// precedes the memcpy.
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
|
|
auto *NewAccess = MSSAU->createMemoryAccessBefore(
|
|
NewMemSet, LastDef->getDefiningAccess(), LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
}
|
|
|
|
eraseInstruction(MemSet);
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether the instruction has undefined content for the given Size,
|
|
/// either because it was freshly alloca'd or started its lifetime.
|
|
static bool hasUndefContents(Instruction *I, Value *Size) {
|
|
if (isa<AllocaInst>(I))
|
|
return true;
|
|
|
|
if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
|
|
if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
|
|
if (LTSize->getZExtValue() >= CSize->getZExtValue())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
|
|
MemoryDef *Def, Value *Size) {
|
|
if (MSSA->isLiveOnEntryDef(Def))
|
|
return isa<AllocaInst>(getUnderlyingObject(V));
|
|
|
|
if (IntrinsicInst *II =
|
|
dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
|
|
ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
|
|
|
|
if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
|
|
if (AA->isMustAlias(V, II->getArgOperand(1)) &&
|
|
LTSize->getZExtValue() >= CSize->getZExtValue())
|
|
return true;
|
|
}
|
|
|
|
// If the lifetime.start covers a whole alloca (as it almost always
|
|
// does) and we're querying a pointer based on that alloca, then we know
|
|
// the memory is definitely undef, regardless of how exactly we alias.
|
|
// The size also doesn't matter, as an out-of-bounds access would be UB.
|
|
AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V));
|
|
if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
|
|
const DataLayout &DL = Alloca->getModule()->getDataLayout();
|
|
if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL))
|
|
if (*AllocaSize == LTSize->getValue() * 8)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Transform memcpy to memset when its source was just memset.
|
|
/// In other words, turn:
|
|
/// \code
|
|
/// memset(dst1, c, dst1_size);
|
|
/// memcpy(dst2, dst1, dst2_size);
|
|
/// \endcode
|
|
/// into:
|
|
/// \code
|
|
/// memset(dst1, c, dst1_size);
|
|
/// memset(dst2, c, dst2_size);
|
|
/// \endcode
|
|
/// When dst2_size <= dst1_size.
|
|
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
|
|
MemSetInst *MemSet) {
|
|
// Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
|
|
// memcpying from the same address. Otherwise it is hard to reason about.
|
|
if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
|
|
return false;
|
|
|
|
Value *MemSetSize = MemSet->getLength();
|
|
Value *CopySize = MemCpy->getLength();
|
|
|
|
if (MemSetSize != CopySize) {
|
|
// Make sure the memcpy doesn't read any more than what the memset wrote.
|
|
// Don't worry about sizes larger than i64.
|
|
|
|
// A known memset size is required.
|
|
ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
|
|
if (!CMemSetSize)
|
|
return false;
|
|
|
|
// A known memcpy size is also required.
|
|
ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize);
|
|
if (!CCopySize)
|
|
return false;
|
|
if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
|
|
// If the memcpy is larger than the memset, but the memory was undef prior
|
|
// to the memset, we can just ignore the tail. Technically we're only
|
|
// interested in the bytes from MemSetSize..CopySize here, but as we can't
|
|
// easily represent this location, we use the full 0..CopySize range.
|
|
MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
|
|
bool CanReduceSize = false;
|
|
if (EnableMemorySSA) {
|
|
MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
|
|
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
MemSetAccess->getDefiningAccess(), MemCpyLoc);
|
|
if (auto *MD = dyn_cast<MemoryDef>(Clobber))
|
|
if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize))
|
|
CanReduceSize = true;
|
|
} else {
|
|
MemDepResult DepInfo = MD->getPointerDependencyFrom(
|
|
MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
|
|
if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
|
|
CanReduceSize = true;
|
|
}
|
|
|
|
if (!CanReduceSize)
|
|
return false;
|
|
CopySize = MemSetSize;
|
|
}
|
|
}
|
|
|
|
IRBuilder<> Builder(MemCpy);
|
|
Instruction *NewM =
|
|
Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
|
|
CopySize, MaybeAlign(MemCpy->getDestAlignment()));
|
|
if (MSSAU) {
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
|
|
auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Perform simplification of memcpy's. If we have memcpy A
|
|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
|
|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
|
|
/// circumstances). This allows later passes to remove the first memcpy
|
|
/// altogether.
|
|
bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
|
|
// We can only optimize non-volatile memcpy's.
|
|
if (M->isVolatile()) return false;
|
|
|
|
// If the source and destination of the memcpy are the same, then zap it.
|
|
if (M->getSource() == M->getDest()) {
|
|
++BBI;
|
|
eraseInstruction(M);
|
|
return true;
|
|
}
|
|
|
|
// If copying from a constant, try to turn the memcpy into a memset.
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
|
|
if (GV->isConstant() && GV->hasDefinitiveInitializer())
|
|
if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
|
|
M->getModule()->getDataLayout())) {
|
|
IRBuilder<> Builder(M);
|
|
Instruction *NewM =
|
|
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
|
|
MaybeAlign(M->getDestAlignment()), false);
|
|
if (MSSAU) {
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
|
|
auto *NewAccess =
|
|
MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
}
|
|
|
|
eraseInstruction(M);
|
|
++NumCpyToSet;
|
|
return true;
|
|
}
|
|
|
|
if (EnableMemorySSA) {
|
|
MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
|
|
MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
|
|
MemoryLocation DestLoc = MemoryLocation::getForDest(M);
|
|
const MemoryAccess *DestClobber =
|
|
MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
|
|
|
|
// Try to turn a partially redundant memset + memcpy into
|
|
// memcpy + smaller memset. We don't need the memcpy size for this.
|
|
// The memcpy most post-dom the memset, so limit this to the same basic
|
|
// block. A non-local generalization is likely not worthwhile.
|
|
if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
|
|
if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
|
|
if (DestClobber->getBlock() == M->getParent())
|
|
if (processMemSetMemCpyDependence(M, MDep))
|
|
return true;
|
|
|
|
MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
AnyClobber, MemoryLocation::getForSource(M));
|
|
|
|
// There are four possible optimizations we can do for memcpy:
|
|
// a) memcpy-memcpy xform which exposes redundance for DSE.
|
|
// b) call-memcpy xform for return slot optimization.
|
|
// c) memcpy from freshly alloca'd space or space that has just started
|
|
// its lifetime copies undefined data, and we can therefore eliminate
|
|
// the memcpy in favor of the data that was already at the destination.
|
|
// d) memcpy from a just-memset'd source can be turned into memset.
|
|
if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
|
|
if (Instruction *MI = MD->getMemoryInst()) {
|
|
if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
|
|
if (auto *C = dyn_cast<CallInst>(MI)) {
|
|
// The memcpy must post-dom the call. Limit to the same block for
|
|
// now. Additionally, we need to ensure that there are no accesses
|
|
// to dest between the call and the memcpy. Accesses to src will be
|
|
// checked by performCallSlotOptzn().
|
|
// TODO: Support non-local call-slot optimization?
|
|
if (C->getParent() == M->getParent() &&
|
|
!accessedBetween(*AA, DestLoc, MD, MA)) {
|
|
// FIXME: Can we pass in either of dest/src alignment here instead
|
|
// of conservatively taking the minimum?
|
|
Align Alignment = std::min(M->getDestAlign().valueOrOne(),
|
|
M->getSourceAlign().valueOrOne());
|
|
if (performCallSlotOptzn(
|
|
M, M, M->getDest(), M->getSource(),
|
|
TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
|
|
C)) {
|
|
LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
|
|
<< " call: " << *C << "\n"
|
|
<< " memcpy: " << *M << "\n");
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (auto *MDep = dyn_cast<MemCpyInst>(MI))
|
|
return processMemCpyMemCpyDependence(M, MDep);
|
|
if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
|
|
if (performMemCpyToMemSetOptzn(M, MDep)) {
|
|
LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
|
|
eraseInstruction(M);
|
|
++NumCpyToSet;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) {
|
|
LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
MemDepResult DepInfo = MD->getDependency(M);
|
|
|
|
// Try to turn a partially redundant memset + memcpy into
|
|
// memcpy + smaller memset. We don't need the memcpy size for this.
|
|
if (DepInfo.isClobber())
|
|
if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
|
|
if (processMemSetMemCpyDependence(M, MDep))
|
|
return true;
|
|
|
|
// There are four possible optimizations we can do for memcpy:
|
|
// a) memcpy-memcpy xform which exposes redundance for DSE.
|
|
// b) call-memcpy xform for return slot optimization.
|
|
// c) memcpy from freshly alloca'd space or space that has just started
|
|
// its lifetime copies undefined data, and we can therefore eliminate
|
|
// the memcpy in favor of the data that was already at the destination.
|
|
// d) memcpy from a just-memset'd source can be turned into memset.
|
|
if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
|
|
if (DepInfo.isClobber()) {
|
|
if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
|
|
// FIXME: Can we pass in either of dest/src alignment here instead
|
|
// of conservatively taking the minimum?
|
|
Align Alignment = std::min(M->getDestAlign().valueOrOne(),
|
|
M->getSourceAlign().valueOrOne());
|
|
if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
|
|
TypeSize::getFixed(CopySize->getZExtValue()),
|
|
Alignment, C)) {
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
|
|
MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
|
|
SrcLoc, true, M->getIterator(), M->getParent());
|
|
|
|
if (SrcDepInfo.isClobber()) {
|
|
if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
|
|
return processMemCpyMemCpyDependence(M, MDep);
|
|
} else if (SrcDepInfo.isDef()) {
|
|
if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) {
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (SrcDepInfo.isClobber())
|
|
if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
|
|
if (performMemCpyToMemSetOptzn(M, MDep)) {
|
|
eraseInstruction(M);
|
|
++NumCpyToSet;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
|
|
/// not to alias.
|
|
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
|
|
if (!TLI->has(LibFunc_memmove))
|
|
return false;
|
|
|
|
// See if the pointers alias.
|
|
if (!AA->isNoAlias(MemoryLocation::getForDest(M),
|
|
MemoryLocation::getForSource(M)))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
|
|
<< "\n");
|
|
|
|
// If not, then we know we can transform this.
|
|
Type *ArgTys[3] = { M->getRawDest()->getType(),
|
|
M->getRawSource()->getType(),
|
|
M->getLength()->getType() };
|
|
M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
|
|
Intrinsic::memcpy, ArgTys));
|
|
|
|
// For MemorySSA nothing really changes (except that memcpy may imply stricter
|
|
// aliasing guarantees).
|
|
|
|
// MemDep may have over conservative information about this instruction, just
|
|
// conservatively flush it from the cache.
|
|
if (MD)
|
|
MD->removeInstruction(M);
|
|
|
|
++NumMoveToCpy;
|
|
return true;
|
|
}
|
|
|
|
/// This is called on every byval argument in call sites.
|
|
bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
|
|
const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
|
|
// Find out what feeds this byval argument.
|
|
Value *ByValArg = CB.getArgOperand(ArgNo);
|
|
Type *ByValTy = CB.getParamByValType(ArgNo);
|
|
TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
|
|
MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
|
|
MemCpyInst *MDep = nullptr;
|
|
if (EnableMemorySSA) {
|
|
MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
|
|
if (!CallAccess)
|
|
return false;
|
|
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
CallAccess->getDefiningAccess(), Loc);
|
|
if (auto *MD = dyn_cast<MemoryDef>(Clobber))
|
|
MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
|
|
} else {
|
|
MemDepResult DepInfo = MD->getPointerDependencyFrom(
|
|
Loc, true, CB.getIterator(), CB.getParent());
|
|
if (!DepInfo.isClobber())
|
|
return false;
|
|
MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
|
|
}
|
|
|
|
// If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
|
|
// a memcpy, see if we can byval from the source of the memcpy instead of the
|
|
// result.
|
|
if (!MDep || MDep->isVolatile() ||
|
|
ByValArg->stripPointerCasts() != MDep->getDest())
|
|
return false;
|
|
|
|
// The length of the memcpy must be larger or equal to the size of the byval.
|
|
ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
|
if (!C1 || !TypeSize::isKnownGE(
|
|
TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
|
|
return false;
|
|
|
|
// Get the alignment of the byval. If the call doesn't specify the alignment,
|
|
// then it is some target specific value that we can't know.
|
|
MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
|
|
if (!ByValAlign) return false;
|
|
|
|
// If it is greater than the memcpy, then we check to see if we can force the
|
|
// source of the memcpy to the alignment we need. If we fail, we bail out.
|
|
MaybeAlign MemDepAlign = MDep->getSourceAlign();
|
|
if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
|
|
getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
|
|
DT) < *ByValAlign)
|
|
return false;
|
|
|
|
// The address space of the memcpy source must match the byval argument
|
|
if (MDep->getSource()->getType()->getPointerAddressSpace() !=
|
|
ByValArg->getType()->getPointerAddressSpace())
|
|
return false;
|
|
|
|
// Verify that the copied-from memory doesn't change in between the memcpy and
|
|
// the byval call.
|
|
// memcpy(a <- b)
|
|
// *b = 42;
|
|
// foo(*a)
|
|
// It would be invalid to transform the second memcpy into foo(*b).
|
|
if (EnableMemorySSA) {
|
|
if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
|
|
MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
|
|
return false;
|
|
} else {
|
|
// NOTE: This is conservative, it will stop on any read from the source loc,
|
|
// not just the defining memcpy.
|
|
MemDepResult SourceDep = MD->getPointerDependencyFrom(
|
|
MemoryLocation::getForSource(MDep), false,
|
|
CB.getIterator(), MDep->getParent());
|
|
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
|
|
return false;
|
|
}
|
|
|
|
Value *TmpCast = MDep->getSource();
|
|
if (MDep->getSource()->getType() != ByValArg->getType()) {
|
|
BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
|
|
"tmpcast", &CB);
|
|
// Set the tmpcast's DebugLoc to MDep's
|
|
TmpBitCast->setDebugLoc(MDep->getDebugLoc());
|
|
TmpCast = TmpBitCast;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
|
|
<< " " << *MDep << "\n"
|
|
<< " " << CB << "\n");
|
|
|
|
// Otherwise we're good! Update the byval argument.
|
|
CB.setArgOperand(ArgNo, TmpCast);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
/// Executes one iteration of MemCpyOptPass.
|
|
bool MemCpyOptPass::iterateOnFunction(Function &F) {
|
|
bool MadeChange = false;
|
|
|
|
// Walk all instruction in the function.
|
|
for (BasicBlock &BB : F) {
|
|
// Skip unreachable blocks. For example processStore assumes that an
|
|
// instruction in a BB can't be dominated by a later instruction in the
|
|
// same BB (which is a scenario that can happen for an unreachable BB that
|
|
// has itself as a predecessor).
|
|
if (!DT->isReachableFromEntry(&BB))
|
|
continue;
|
|
|
|
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
|
|
// Avoid invalidating the iterator.
|
|
Instruction *I = &*BI++;
|
|
|
|
bool RepeatInstruction = false;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
MadeChange |= processStore(SI, BI);
|
|
else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
|
|
RepeatInstruction = processMemSet(M, BI);
|
|
else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
|
|
RepeatInstruction = processMemCpy(M, BI);
|
|
else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
|
|
RepeatInstruction = processMemMove(M);
|
|
else if (auto *CB = dyn_cast<CallBase>(I)) {
|
|
for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
|
|
if (CB->isByValArgument(i))
|
|
MadeChange |= processByValArgument(*CB, i);
|
|
}
|
|
|
|
// Reprocess the instruction if desired.
|
|
if (RepeatInstruction) {
|
|
if (BI != BB.begin())
|
|
--BI;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F)
|
|
: AM.getCachedResult<MemoryDependenceAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto *AA = &AM.getResult<AAManager>(F);
|
|
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F)
|
|
: AM.getCachedResult<MemorySSAAnalysis>(F);
|
|
|
|
bool MadeChange =
|
|
runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
|
|
if (!MadeChange)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
if (MD)
|
|
PA.preserve<MemoryDependenceAnalysis>();
|
|
if (MSSA)
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
|
|
TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
|
|
AssumptionCache *AC_, DominatorTree *DT_,
|
|
MemorySSA *MSSA_) {
|
|
bool MadeChange = false;
|
|
MD = MD_;
|
|
TLI = TLI_;
|
|
AA = AA_;
|
|
AC = AC_;
|
|
DT = DT_;
|
|
MSSA = MSSA_;
|
|
MemorySSAUpdater MSSAU_(MSSA_);
|
|
MSSAU = MSSA_ ? &MSSAU_ : nullptr;
|
|
// If we don't have at least memset and memcpy, there is little point of doing
|
|
// anything here. These are required by a freestanding implementation, so if
|
|
// even they are disabled, there is no point in trying hard.
|
|
if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
|
|
return false;
|
|
|
|
while (true) {
|
|
if (!iterateOnFunction(F))
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (MSSA_ && VerifyMemorySSA)
|
|
MSSA_->verifyMemorySSA();
|
|
|
|
MD = nullptr;
|
|
return MadeChange;
|
|
}
|
|
|
|
/// This is the main transformation entry point for a function.
|
|
bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *MDWP = !EnableMemorySSA
|
|
? &getAnalysis<MemoryDependenceWrapperPass>()
|
|
: getAnalysisIfAvailable<MemoryDependenceWrapperPass>();
|
|
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *MSSAWP = EnableMemorySSA
|
|
? &getAnalysis<MemorySSAWrapperPass>()
|
|
: getAnalysisIfAvailable<MemorySSAWrapperPass>();
|
|
|
|
return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT,
|
|
MSSAWP ? &MSSAWP->getMSSA() : nullptr);
|
|
}
|