isNoopIntrinsic returns true for some intrinsics that are modeled in
MemorySSA but do not actually read or write any memory and do not block
DSE. Such intrinsics should not be considered as read-clobbers.
This patch adds metadata !noundef and makes load instructions can optionally have it.
A load with !noundef always return a well-defined value (has no undef bit or isn't poison).
If the loaded value isn't well defined, the behavior is undefined.
This metadata can be used to encode the assumption from C/C++ that certain reads of variables should have well-defined values.
It is helpful for optimizing freeze instructions away, because freeze can be removed when its operand has well-defined value, and showing that a load from arbitrary location is well-defined is usually hard otherwise.
The same information can be encoded with llvm.assume with operand bundle; using metadata is chosen because I wasn't sure whether code motion can be freely done when llvm.assume is inserted from clang instead.
The existing codebase already is stripping unknown metadata when doing code motion, so using metadata is UB-safe as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89050
We can not bitcast pointers across different address spaces, and VectorCombine
should be careful when it attempts to find the original source of the loaded
data.
Differential Revision: https://reviews.llvm.org/D89577
This reverts commit eb9f7c28e5fe6d75fed3587023e17f2997c8024b.
Previously this was incorrectly handling linking of the contained
type, so this merges the fixes from D88973.
Logic of widenWithVariantUse is split into check and transform
part, unlike any other transform in IndVars. We want to pass some
extra flags from analysis to transform part and standartize
the code at once, so merging them together.
Variable ExtendOperExpr only exists to check whether it is a SCEV ext.
We create it as SCEV ext right here, so semantically this check is
trivially true. In theory, it may fail if SCEV is smart enough and can
simplify the expression. However, no matter whether it is an ext or not,
we never use this fact for further reasoning. So this code is currently
useless and in theory may become harmful with SCEV's development.
We do not expect any behavior changes with removing it. If it caused
negative changes, the patch should be reverted.
Some facts have already been checked in widenWithVariantUse and then
checked again in widenWithVariantUseCodegen. The latter is redundant,
we can replace it with asserts.
Prep work for PR35155 - renamed narrowRotate to narrowFunnelShift, rewrote some comments and adjusted code to collect separate shift values, although we bail if they don't match (still only rotations are only actually folded).
I'm trying to match matchFunnelShift as much as possible in case we finally get to merge these one day.
After investigation by @asbirlea, the issue that caused the
revert appears to be an issue in the original source, rather
than a problem with the compiler.
This patch enables MemorySSA DSE again.
This reverts commit 915310bf14cbac58a81fd60e0fa9dc8d341108e2.
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This is an initial cleanup of the way LoopVersioning interacts with LAA.
Currently LoopVersioning has 2 ways of initializing things:
1. Passing LAI and passing UseLAIChecks = true
2. Passing UseLAIChecks = false, followed by calling setSCEVChecks and
setAliasChecks.
Both ways of initializing lead to the same result and the duplication
seems more complicated than necessary.
This patch removes the UseLAIChecks flag from the constructor and the
setSCEVChecks & setAliasChecks helpers and move initialization
exclusively to the constructor.
This simplifies things, by providing a single way to initialize
LoopVersioning and reducing duplication.
Reviewed By: Meinersbur, lebedev.ri
Differential Revision: https://reviews.llvm.org/D84406
Following up D81682 and D83903, remove the code for the old value profiling
buckets, which have been replaced with the new, extended buckets and disabled by
default.
Also syncing InstrProfData.inc between compiler-rt and llvm.
Differential Revision: https://reviews.llvm.org/D88838
Replace m_ConstantInt with m_APInt to support uniform vectors (with no undef elements)
Adding non-undef support would involve some refactoring of the MaskOps struct but this might still be worth it.
This reverts commit 25a97c3a43d7bc469ec67dd4e901a507b9b11116.
We have other constant folds that fold undef funnel shift amounts to 0 - so we need to be consistent.
If we end up with regressions where we lose a splat shift amount pattern we'll have to investigate other canonicalizations, but matchFunnelShift currently protects us from that.
This was broken by 16295d521e294b27106e51fac29957c1aac8ff89, when
instructions started being handled and not just constant
expressions. This was re-inserting an equivalent bitcast to the
original memcpy operand, which made a non-functional IR change on
every iteration.
This also fixes a secondary problem where it was inserting
addrspacecasts which may not have been legal (i.e. it changed the
source address space). Start visiting all pointer users and fail out
if we can't process them. Also start handling the relevant memory
intrinsic users. These cases can be dealt with by running
InferAddressSpaces separately.
This reverts the revert commit 710aceb645e7dba4de7053eef2c616311b9163d4
and includes a fix for a memsan failure.
Original message:
This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.
m_SpecificInt doesn't accept undef elements in a vector splat value - tweak specific_intval to optionally allow undefs and add the m_SpecificIntAllowUndef variants.
Allows us to remove the m_APIntAllowUndef + comparison hack inside matchFunnelShift
By always performing a modulo on the shift amount constants this was causing undef amounts being replaced with zero, meaning we were losing funnel shift by splat (with undef) patterns.
Tweaked the shift amount bounds check to support (passthrough) undefs, and use Constant::mergeUndefsWith to preserve the undefs after folding.
While we haven't encountered an earth-shattering problem with this yet,
by now it is pretty evident that trying to model the ptr->int cast
implicitly leads to having to update every single place that assumed
no such cast could be needed. That is of course the wrong approach.
Let's back this out, and re-attempt with some another approach,
possibly one originally suggested by Eli Friedman in
https://bugs.llvm.org/show_bug.cgi?id=46786#c20
which should hopefully spare us this pain and more.
This reverts commits 1fb610429308a7c29c5065f5cc35dcc3fd69c8b1,
7324616660fc0995fa8c166e3c392361222d5dbc,
aaafe350bb65dfc24c2cdad4839059ac81899fbe,
e92a8e0c743f83552fac37ecf21e625ba3a4b11e.
I've kept&improved the tests though.
LV fails with assertion checking that UF > 0. We already set UF to 1 if it is 0 except the case when IC > MaxInterleaveCount. The fix is to set UF to 1 for that case as well.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D87679
Replace m_SpecificInt with m_APIntAllowUndef to matching splats containing undefs, then use ConstantExpr::mergeUndefsWith to merge the undefs together in the result.
The undef funnel shift amounts are getting replaced with zero later on - I'll address this in a later patch, otherwise we lose potential shift by splat value patterns.
D85703 will need to create shallow wrappers in order to track the spmd icv. We need to make it available.
Differential Revision: https://reviews.llvm.org/D89342
-loop-extract-single is just -loop-extract on one loop.
-loop-extract depended on -break-crit-edges and -loop-simplify in the
legacy PM, but the NPM doesn't allow specifying pass dependencies like
that, so manually add those passes to the RUN lines where necessary.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89016
While promotion currently always has an AST available, it is only
relevant for invalidation purposes in LoopPromoter, so we do not
need to have it as a hard dependency.
This adds an -enable-memcpyopt-memoryssa option that currently does
nothing apart from requiring MSSA as a dependency. The tests are
split to run both with the option disabled and enabled. I went with
this rather than the separate directory DSE uses, as I found it
convenient to have a direct side-by-side comparison of differences.
Differential Revision: https://reviews.llvm.org/D89206
moveUp() moves instructions, so we should move the corresponding
memory accesses as well. We should also move the store instruction
itself: Even though we'll end up removing it later, this gives us
a correct MemoryDef to replace.
The implementation is somewhat more complicated than it should be,
because we also handle the case where P does not have a memory
access due to a degnerate AA pipeline. Hopefully, the need for this
will go away in the future, when the rest of the pass is based on
MSSA.
Differential Revision: https://reviews.llvm.org/D88778
If the memcpy operands are the same (which is allowed since D86815)
then the memcpy is effectively a no-op and the partially overlapping
memset is not dead.
Differential Revision: https://reviews.llvm.org/D89192
MemCpyOpt can shorten a memset if it is later partially overwritten
by a memcpy. It checks that the destination is not read in between,
but we also need to make sure that the destination cannot be observed
via unwinding.
Differential Revision: https://reviews.llvm.org/D89190
The previous code added the scope on each iteration, so that the
same scope was represented many times in the same !noalias metadata.
That's legal, and semantically equivalent to only storing the scope
once, but it's also wasteful and may pessimize further optimization
if AATags get intersected naively, as done by the AliasSetTracker.