pic calls. These need to be there so we don't try and use helper
functions when we call those.
As part of this, make sure that we properly exclude helper functions in pic
mode when indirect calls are involved.
llvm-svn: 182343
By default, a teq instruction is inserted after integer divide. No divide-by-zero
checks are performed if option "-mnocheck-zero-division" is used.
llvm-svn: 182306
Previously, three instructions were needed:
trunc.w.s $f0, $f2
mfc1 $4, $f0
sw $4, 0($2)
Now we need only two:
trunc.w.s $f0, $f2
swc1 $f0, 0($2)
llvm-svn: 182053
This creates stubs that help Mips32 functions call Mips16
functions which have floating point parameters that are normally passed
in floating point registers.
llvm-svn: 181972
Mips16/32 floating point interoperability.
When Mips16 code calls external functions that would normally have some
of its parameters or return values passed in floating point registers,
it needs (Mips32) helper functions to do this because while in Mips16 mode
there is no ability to access the floating point registers.
In Pic mode, this is done with a set of predefined functions in libc.
This case is already handled in llvm for Mips16.
In static relocation mode, for efficiency reasons, the compiler generates
stubs that the linker will use if it turns out that the external function
is a Mips32 function. (If it's Mips16, then it does not need the helper
stubs).
These stubs are identically named and the linker knows about these tricks
and will not create multiple copies and will delete them if they are not
needed.
llvm-svn: 181753
This option is used when the user wants to avoid emitting double precision FP
loads and stores. Double precision FP loads and stores are expanded to single
precision instructions after register allocation.
llvm-svn: 181718
mips16/mips32 floating point interoperability.
This patch fixes returns from mips16 functions so that if the function
was in fact called by a mips32 hard float routine, then values
that would have been returned in floating point registers are so returned.
Mips16 mode has no floating point instructions so there is no way to
load values into floating point registers.
This is needed when returning float, double, single complex, double complex
in the Mips ABI.
Helper functions in libc for mips16 are available to do this.
For efficiency purposes, these helper functions have a different calling
convention from normal Mips calls.
Registers v0,v1,a0,a1 are used to pass parameters instead of
a0,a1,a2,a3.
This is because v0,v1,a0,a1 are the natural registers used to return
floating point values in soft float. These values can then be moved
to the appropriate floating point registers with no extra cost.
The only register that is modified is ra in this call.
The helper functions make sure that the return values are in the floating
point registers that they would be in if soft float was not in effect
(which it is for mips16, though the soft float is implemented using a mips32
library that uses hard float).
llvm-svn: 181641
its fields.
This removes false dependencies between DSP instructions which access different
fields of the the control register. Implicit register operands are added to
instructions RDDSP and WRDSP after instruction selection, depending on the
value of the mask operand.
llvm-svn: 181041
register.
- Define pseudo instructions which store or load ccond field of the DSP
control register.
- Emit the pseudos in MipsSEInstrInfo::storeRegToStack and loadRegFromStack.
- Expand the pseudos before callee-scan save.
- Emit instructions RDDSP or WRDSP to copy between ccond field and GPRs.
llvm-svn: 180969
Expand copy instructions between two accumulator registers before callee-saved
scan is done. Handle copies between integer GPR and hi/lo registers in
MipsSEInstrInfo::copyPhysReg. Delete pseudo-copy instructions that are not
needed.
llvm-svn: 180827
Mips32 code as Mips16 unless it can't be compiled as Mips 16. For now this
would happen as long as floating point instructions are not needed.
Probably it would also make sense to compile as mips32 if atomic operations
are needed too. There may be other cases too.
A module pass prescans the IR and adds the mips16 or nomips16 attribute
to functions depending on the functions needs.
Mips 16 mode can result in a 40% code compression by utililizing 16 bit
encoding of many instructions.
The hope is for this to replace the traditional gcc way of dealing with
Mips16 code using floating point which involves essentially using soft float
but with a library implemented using mips32 floating point. This gcc
method also requires creating stubs so that Mips32 code can interact with
these Mips 16 functions that have floating point needs. My conjecture is
that in reality this traditional gcc method would never win over this
new method.
I will be implementing the traditional gcc method also. Some of it is already
done but I needed to do the stubs to finish the work and those required
this mips16/32 mixed mode capability.
I have more ideas for to make this new method much better and I think the old
method will just live in llvm for anyone that needs the backward compatibility
but I don't for what reason that would be needed.
llvm-svn: 179185
Modifier 'D' is to use the second word of a double integer.
We had previously implemented the pure register varient of
the modifier and this patch implements the memory reference.
#include "stdio.h"
int b[8] = {0,1,2,3,4,5,6,7};
void main()
{
int i;
// The first word. Notice, no 'D'
{asm (
"lw %0,%1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
// The second word
{asm (
"lw %0,%D1;"
: "=r" (i)
: "m" (*(b+4))
);}
printf("%d\n",i);
}
llvm-svn: 179135
and mips16 on a per function basis.
Because this patch is somewhat involved I have provide an overview of the
key pieces of it.
The patch is written so as to not change the behavior of the non mixed
mode. We have tested this a lot but it is something new to switch subtargets
so we don't want any chance of regression in the mainline compiler until
we have more confidence in this.
Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1.
For that reason there are derived versions of the register info, frame info,
instruction info and instruction selection classes.
Now we register three separate passes for instruction selection.
One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then
one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and
MipsSEISelDAGToDAG.cpp).
When the ModuleISel pass runs, it determines if there is a need to switch
subtargets and if so, the owning pointers in MipsTargetMachine are
appropriately changed.
When 16Isel or SEIsel is run, they will return immediately without doing
any work if the current subtarget mode does not apply to them.
In addition, MipsAsmPrinter needs to be reset on a function basis.
The pass BasicTargetTransformInfo is substituted with a null pass since the
pass is immutable and really needs to be a function pass for it to be
used with changing subtargets. This will be fixed in a follow on patch.
llvm-svn: 179118
This patch initializes t9 to the handler address, but only if the relocation
model is pic. This handles the case where handler to which eh.return jumps
points to the start of the function.
Patch by Sasa Stankovic.
llvm-svn: 178588
derived class MipsSETargetLowering.
We shouldn't be generating madd/msub nodes if target is Mips16, since Mips16
doesn't have support for multipy-add/sub instructions.
llvm-svn: 178404
Apparently my final cleanup to use a relevant suffix for these tests before
committing r176831 caused them to stop running since lit wasn't configured to
run tests with that suffix in those directories (why don't we just have a
global suffix list?). So, add the suffix to the relevant directories & fix the
test that has bitrotted over the last week due to my debug info schema changes.
llvm-svn: 177315
This calling convention was added just to handle functions which return vector
of floats. The fix committed in r165585 solves the problem.
llvm-svn: 176530
This patch eliminates the need to emit a constant move instruction when this
pattern is matched:
(select (setgt a, Constant), T, F)
The pattern above effectively turns into this:
(conditional-move (setlt a, Constant + 1), F, T)
llvm-svn: 176384
SltCCRxRy16, SltiCCRxImmX16, SltiuCCRxImmX16, SltuCCRxRy16
$T8 shows up as register $24 when emitted from C++ code so we had
to change some tests that were already there for this functionality.
llvm-svn: 175593
This expansion will be moved to expandISelPseudos as soon as I can figure
out how to do that. There are other instructions which use this
ExpandFEXT_T8I816_ins and as soon as I have finished expanding them all,
I will delete the macro asm string text so it has no way to be used
in the future.
llvm-svn: 175413
not matter but makes it more gcc compatible which avoids possible subtle
problems. Also, turned back on a disabled check in helloworld.ll.
llvm-svn: 175237
if the offset fits in 11 bits. This makes use of the fact that the abi
requires sp to be 8 byte aligned so the actual offset can fit in 8
bits. It will be shifted left and sign extended before being actually used.
The assembler or direct object emitter will shift right the 11 bit
signed field by 3 bits. We don't need to deal with that here.
llvm-svn: 175073
same so we put in the comment field an indicator when we think we are
emitting the 16 bit version. For the direct object emitter, the difference is
important as well as for other passes which need an accurate count of
program size. There will be other similar putbacks to this for various
instructions.
llvm-svn: 174747
allowed size for the instruction. This code uses RegScavenger to fix this.
We sometimes need 2 registers for Mips16 so we must handle things
differently than how register scavenger is normally used.
llvm-svn: 174696
is a vararg function.
The original code was examining flag OutputArg::IsFixed to determine whether
CC_MipsN_VarArg or CC_MipsN should be called. This is not correct, since this
flag is often set to false when the function being analyzed is a non-variadic
function.
llvm-svn: 174442
and enables the instruction printer to print aliased
instructions.
Due to usage of RegisterOperands a change in common
code (utils/TableGen/AsmWriterEmitter.cpp) is required
to get the correct register value if it is a RegisterOperand.
Contributer: Vladimir Medic
llvm-svn: 174358
Allow Mips16 routines to call Mips32 routines that have abi requirements
that either arguments or return values are passed in floating point
registers. This handles only the pic case. We have not done non pic
for Mips16 yet in any form.
The libm functions are Mips32, so with this addition we have a complete
Mips16 hard float implementation.
We still are not able to complete mix Mip16 and Mips32 with hard float.
That will be the next phase which will have several steps. For Mips32
to freely call Mips16 some stub functions must be created.
llvm-svn: 173320
these patches are tested a lot by test-suite but
make check tests are forthcoming once the next
few patches that complete this are committed.
with the next few patches the pass rate for mips16 is
near 100%
llvm-svn: 170656
physical register $r1 to $r0.
GNU disassembler recognizes an "or" instruction as a "move", and this change
makes the disassembled code easier to read.
Original patch by Reed Kotler.
llvm-svn: 170655
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
llvm-svn: 170279
In this case, essentially it is soft float with different library routines.
The next step will be to make this fully interoperational with mips32 floating
point and that requires creating stubs for functions with signatures that
contain floating point types.
I have a more sophisticated design for mips16 hardfloat which I hope to
implement at a later time that directly does floating point without the need
for function calls.
The mips16 encoding has no floating point instructions so one needs to
switch to mips32 mode to execute floating point instructions.
llvm-svn: 170259