a nice and tidy:
%x1 = load i32* %0, align 4
%1 = icmp eq i32 %x1, 1179403647
br i1 %1, label %if.then, label %if.end
instead of doing lots of loads and branches. May the FreeBSD bootloader
long fit in its allocated space.
llvm-svn: 130416
wider load would allow elimination of subsequent loads, and when the wider
load is still a native integer type. This eliminates a ton of loads on
various benchmarks involving struct fields, though it is somewhat hobbled
by clang not being very aggressive about field alignment.
This is yet another step along the way towards resolving PR6627.
llvm-svn: 130390
return it as a clobber. This allows GVN to do smart things.
Enhance GVN to be smart about the case when a small load is clobbered
by a larger overlapping load. In this case, forward the value. This
allows us to compile stuff like this:
int test(void *P) {
int tmp = *(unsigned int*)P;
return tmp+*((unsigned char*)P+1);
}
into:
_test: ## @test
movl (%rdi), %ecx
movzbl %ch, %eax
addl %ecx, %eax
ret
which has one load. We already handled the case where the smaller
load was from a must-aliased base pointer.
llvm-svn: 130180
I still think that LVI should be handling this, but that capability is some ways off in the future,
and this matters for some significant benchmarks.
llvm-svn: 122378
this was a tree of hashtables, and a query recursed into the table for the immediate dominator ad infinitum
if the initial lookup failed. This led to really bad performance on tall, narrow CFGs.
We can instead replace it with what is conceptually a multimap of value numbers to leaders (actually
represented by a hashtable with a list of Value*'s as the value type), and then
determine which leader from that set to use very cheaply thanks to the DFS numberings maintained by
DominatorTree. Because there are typically few duplicates of a given value, this scan tends to be
quite fast. Additionally, we use a custom linked list and BumpPtr allocation to avoid any unnecessary
allocation in representing the value-side of the multimap.
This change brings with it a 15% (!) improvement in the total running time of GVN on 403.gcc, which I
think is pretty good considering that includes all the "real work" being done by MemDep as well.
The one downside to this approach is that we can no longer use GVN to perform simple conditional progation,
but that seems like an acceptable loss since we now have LVI and CorrelatedValuePropagation to pick up
the slack. If you see conditional propagation that's not happening, please file bugs against LVI or CVP.
llvm-svn: 119714
offload the work to hasConstantValue rather than do something more
complicated (such handling mutually recursive phis) because (1) it is
not clear it is worth it; and (2) if it is worth it, maybe such logic
would be better placed in hasConstantValue. Adjust some GVN tests
which are now cleaned up much further (eg: all phi nodes are removed).
llvm-svn: 119043
references. For example, this allows gvn to eliminate the load in
this example:
void foo(int n, int* p, int *q) {
p[0] = 0;
p[1] = 1;
if (n) {
*q = p[0];
}
}
llvm-svn: 118714
does normal initialization and normal chaining. Change the default
AliasAnalysis implementation to NoAlias.
Update StandardCompileOpts.h and friends to explicitly request
BasicAliasAnalysis.
Update tests to explicitly request -basicaa.
llvm-svn: 116720
Anyone interested in more general PRE would be better served by implementing it separately, to get real
anticipation calculation, etc.
llvm-svn: 115337
Splitting critical edges at the merge point only addressed part of the issue; it is also possible for non-post-domination
to occur when the path from the load to the merge has branches in it. Unfortunately, full anticipation analysis is
time-consuming, so for now approximate it. This is strictly more conservative than real anticipation, so we will miss
some cases that real PRE would allow, but we also no longer insert loads into paths where they didn't exist before. :-)
This is a very slight net positive on SPEC for me (0.5% on average). Most of the benchmarks are largely unaffected, but
when it pays off it pays off decently: 181.mcf improves by 4.5% on my machine.
llvm-svn: 114785
to determine where to place PHIs by iteratively comparing reaching definitions
at each block. That was just plain wrong. This version now computes the
dominator tree within the subset of the CFG where PHIs may need to be placed,
and then places the PHIs in the iterated dominance frontier of each definition.
The rest of the patch is mostly the same, with a few more performance
improvements added in.
llvm-svn: 101612
(what was I thinking?) and there's also a problem with LCSSA. I'll try again
later with fixes.
--- Reverse-merging r100263 into '.':
U lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100177 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100148 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100147 into '.':
U include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100131 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100130 into '.':
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100126 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
--- Reverse-merging r100050 into '.':
D test/Transforms/GVN/2010-03-31-RedundantPHIs.ll
--- Reverse-merging r100047 into '.':
G include/llvm/Transforms/Utils/SSAUpdater.h
G lib/Transforms/Utils/SSAUpdater.cpp
llvm-svn: 100264
This was already being done in SSAUpdater::GetValueAtEndOfBlock so I've
just changed SSAUpdater to check for existing PHIs in both places.
llvm-svn: 94690
cache a pointer as being unavailable due to phi trans in the
wrong place. This would cause later queries to fail even when
they didn't involve phi trans.
llvm-svn: 91787
value size. This only manifested when memdep inprecisely returns clobber,
which is do to a caching issue in the PR5744 testcase. We can 'efficiently
emulate' this by using '-no-aa'
llvm-svn: 91004
add, there is no need to scan the world to find the same add again.
This invalidates the previous testcase, which wasn't wonderful anyway,
because it needed a run of instcombine to permute the use-lists in
just the right way to before GVN was run (so it was really fragile).
Not a big loss.
llvm-svn: 90973
phi translation of complex expressions like &A[i+1]. This has the
following benefits:
1. The phi translation logic is all contained in its own class with
a strong interface and verification that it is self consistent.
2. The logic is more correct than before. Previously, if intermediate
expressions got PHI translated, we'd miss the update and scan for
the wrong pointers in predecessor blocks. @phi_trans2 is a testcase
for this.
3. We have a lot less code in memdep.
We can handle phi translation across blocks of things like @phi_trans3,
which is pretty insane :).
This patch should fix the miscompiles of 255.vortex, and I tested it
with a bootstrap of llvm-gcc, llvm-test and dejagnu of course.
llvm-svn: 90926
handle cases like this:
void test(int N, double* G) {
long j;
for (j = 1; j < N - 1; j++)
G[j+1] = G[j] + G[j+1];
}
where G[1] isn't live into the loop.
llvm-svn: 90041
translation of add with immediate. This allows us
to optimize this function:
void test(int N, double* G) {
long j;
G[1] = 1;
for (j = 1; j < N - 1; j++)
G[j+1] = G[j] + G[j+1];
}
to only do one load every iteration of the loop.
llvm-svn: 90013
if it is not ultimately captured. Teach BasicAliasAnalysis that a
local object address which does not escape and is never stored does
not alias with a value resulting from a load.
llvm-svn: 89398
from GVN, this also speeds it up, inserts fewer PHI nodes (see the
testcase) and allows it to remove more loads (due to fewer PHI nodes
standing in the way).
llvm-svn: 83746
from a piece of a large store when both are in the same block.
This allows clang to compile the testcase in PR4216 to this code:
_test_bitfield:
movl 4(%esp), %eax
movl %eax, %ecx
andl $-65536, %ecx
orl $32962, %eax
andl $40186, %eax
orl %ecx, %eax
ret
This is not ideal, but is a whole lot better than the code produced
by llvm-gcc:
_test_bitfield:
movw $-32574, %ax
orw 4(%esp), %ax
andw $-25350, %ax
movw %ax, 4(%esp)
movw 7(%esp), %cx
shlw $8, %cx
movzbl 6(%esp), %edx
orw %cx, %dx
movzwl %dx, %ecx
shll $16, %ecx
movzwl %ax, %eax
orl %ecx, %eax
ret
and dramatically better than that produced by gcc 4.2:
_test_bitfield:
pushl %ebx
call L3
"L00000000001$pb":
L3:
popl %ebx
movl 8(%esp), %eax
leal 0(,%eax,4), %edx
sarb $7, %dl
movl %eax, %ecx
andl $7168, %ecx
andl $-7201, %ebx
movzbl %dl, %edx
andl $1, %edx
sall $5, %edx
orl %ecx, %ebx
orl %edx, %ebx
andl $24, %eax
andl $-58336, %ebx
orl %eax, %ebx
orl $32962, %ebx
movl %ebx, %eax
popl %ebx
ret
llvm-svn: 82439
so that nonlocal and partially redundant loads can use it as well.
The testcase shows examples of craziness this can handle. This triggers
*many* times in 176.gcc.
llvm-svn: 82403
(and load -> load) when the base pointers must alias but when
they are different types. This occurs very very frequently in
176.gcc and other code that uses bitfields a lot.
llvm-svn: 82399
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
instead of a bool argument, and to do the dominator check itself.
This makes it eaiser to use when DominatorTree information is
available.
llvm-svn: 80920
so that all code paths get it. PR4256 was about a case where the
phi translation loop would find all preds in the Visited cache, so
it could get by without re-sorting the NonLocalPointerDeps cache.
Fix this by resorting it earlier, there is no reason not to do this.
This patch inspired by Jakub Staszak's patch.
llvm-svn: 75476