Summary:
This will make migrating code easier and generally seems like a good collection
of API improvements.
Some of these APIs seem like more consistent / better naming of existing
ones. I've retained the old names for migration simplicit and am just
adding the new ones in this commit. I'll try to garbage collect these
once CallSite is gone.
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55638
llvm-svn: 350109
With this, check-clang runs and passes all of clang's lit tests. It doesn't run
any of its unit tests yet.
Like with check-lld, running just ninja -C out/gn will build all prerequisites
needed to run tests, but it won't run the tests (so that the build becomes
clean after one build). Running ninja -C out/gn check-clang will build
prerequisites if needed and run the tests. The check-clang target never becomes
clean and runs tests every time.
Differential Revision: https://reviews.llvm.org/D56095
llvm-svn: 350108
Create PMULDQ/PMULUDQ as long as the number of elements is a power of 2.
This seems to give some improvements in our ability to use SimplifyDemandedBits.
llvm-svn: 350084
Make each of the helper functions only return their comparison node and the condition code. Leave X86ISD::SETCC creation to the LowerSETCC function itself.
Looking into whether we can use this code directly in BRCOND and SELECT lowering instead of going through LowerSETCC which creates an X86ISD::SETCC node we need to look through.
llvm-svn: 350082
Only one of the 3 callers of LowerAndToBT need the SETCC node. Two of them have to look through it to find the operands they really need. Instead create it after the one call that needs it.
LowerAndToBT now returns both the BT node and the X86 specific condition code separately.
llvm-svn: 350081
Summary:
These instructions are currently unused in our backend, but for
completeness it is good to support them, so they can be used with
the assembler in hand-written code.
Tests are very basic, signature support missing much like other blocks.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55973
llvm-svn: 350079
Summary:
It does so using a simple nesting stack, and gives clear errors upon
violation. This is unique to wasm, since most CPUs do not have
any nested constructs.
Had to add an end of file check to the general assembler for this.
Note: if/else/end instructions are not currently supported in our
tablegen defs, so these tests will be enabled in a follow-up.
They already pass the nesting check.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55797
llvm-svn: 350078
Summary:
Existing LIR recognizes CTLZ where shifting input variable right until it is zero. (Shift-Until-Zero idiom)
This commit:
1. Augments Shift-Until-Zero idiom to recognize CTTZ where input variable is shifted left.
2. Prepare for BitScan idiom recognition.
Patch by Yuanfang Chen (tabloid.adroit)
Reviewers: craig.topper, evstupac
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55876
llvm-svn: 350074
Fixes crash reported after r347354 for frontends that don't always emit
'this' pointers for methods. Now we will silently produce debug info
that makes functions like this look like static methods, which seems
reasonable.
llvm-svn: 350073
The patch adds a possibility to make library calls on NVPTX.
An important thing about library functions - they must be defined within
the current module. This basically should guarantee that we produce a
valid PTX assembly (without calls to not defined functions). The one who
wants to use the libcalls is probably will have to link against
compiler-rt or any other implementation.
Currently, it's completely impossible to make library calls because of
error LLVM ERROR: Cannot select: i32 = ExternalSymbol '...'. But we can
lower ExternalSymbol to TargetExternalSymbol and verify if the function
definition is available.
Also, there was an issue with a DAG during legalisation. When we expand
instruction into libcall, the inner call-chain isn't being "integrated"
into outer chain. Since the last "data-flow" (call retval load) node is
located in call-chain earlier than CALLSEQ_END node, the latter becomes
a leaf and therefore a dead node (and is being removed quite fast).
Proposed here solution relies on another data-flow pseudo nodes
(ProxyReg) which purpose is only to keep CALLSEQ_END at legalisation and
instruction selection phases - we remove the pseudo instructions before
register scheduling phase.
Patch by Denys Zariaiev!
Differential Revision: https://reviews.llvm.org/D34708
llvm-svn: 350069
Add widen scalar for type index 1 (i1 condition) for G_SELECT.
Select G_SELECT for pointer, s32(integer) and smaller low level
types on MIPS32.
Differential Revision: https://reviews.llvm.org/D56001
llvm-svn: 350063
Summary:
This patch is to fix the bug imported by rL341634.
In above submit , the the return type of ISD::ADDE is
14224: SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64),
but in fact, the second return type of ISD::ADDE should be
MVT::Glue not MVT::i64.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D55977
llvm-svn: 350061
GN wants the NOSORT line to be the first line of a comment block, not the last
line.
I sent https://gn-review.googlesource.com/c/gn/+/3560 to support having it in
the last line too, but since it will be a while until everyone has that change
even if it's expected, use the form that works today.
Differential Revision: https://reviews.llvm.org/D56065
llvm-svn: 350060
This is an alternative to what I attempted in D56057.
GetDemandedBits is a special version of SimplifyDemandedBits that allows simplifications even when the operand has other uses. GetDemandedBits will only do simplifications that allow a node to be bypassed. It won't create new nodes or alter any of the other users.
I had to add support for bypassing SIGN_EXTEND_INREG to GetDemandedBits.
Based on a patch that Simon Pilgrim sent me in email.
Fixes PR40142.
llvm-svn: 350059
libclang is somewhat incomplete. It's just enough to get check-clang to pass,
but that requires it to be pretty complete. The biggest thing is that it's not
built as a shared library on Linux. The libclang/BUILD.gn file has a comment
with details on what else is missing.
Differential Revision: https://reviews.llvm.org/D56059
llvm-svn: 350054
This patch teaches LoopSimplifyCFG to remove dead exiting edges
from loops.
Differential Revision: https://reviews.llvm.org/D54025
Reviewed By: fedor.sergeev
llvm-svn: 350049
Both of these places reference memset-like loops. Memset is precise.
Trying to keep these patches super small so they're easily post-commit
verifiable, as requested in D44748.
llvm-svn: 350044
More migration so we can disable the implicit int -> LocationSize
conversion.
All of these are either scatter/gather'ed vector instructions, or direct
loads. Hence, they're all precise.
Perhaps if we see way more getTypeStoreSize calls, we can make a
getTypeStoreLocationSize (or similar) as a wrapper that applies this
::precise. Doesn't appear that it's a good idea to make getTypeStoreSize
return a LocationSize itself, however.
llvm-svn: 350042
Remove the TESTmr isel patterns and add another postprocessing combine for TESTrr+ANDrm->TESTmr. We already have a postprocessing combine for TESTrr+ANDrr->TESTrr. With this we can give ANDN a chance to match first. And clean it up during post processing if we ended up with just a regular AND.
This is another step towards my plan to gut EmitTest and do more flag handling during isel matching or by using optimizeCompare.
llvm-svn: 350038
Summary:
SetVector uses both DenseSet and vector, which is time/memory inefficient. The points are represented as natural numbers so we can replace the DenseSet part by indexing into a vector<char> instead.
Don't cargo cult the pseudocode on the wikipedia DBSCAN page. This is a standard BFS style algorithm (the similar loops have been used several times in other LLVM components): every point is processed at most once, thus the queue has at most NumPoints elements. We represent it with a vector and allocate it outside of the loop to avoid allocation in the loop body.
We check `Processed[P]` to avoid enqueueing a point more than once, which also nicely saves us a `ClusterIdForPoint_[Q].isUndef()` check.
Many people hate the oneshot abstraction but some favor it, therefore we make a compromise, use a lambda to abstract away the neighbor adding process.
Delete the comment `assert(Neighbors.capacity() == (Points_.size() - 1));` as it is wrong.
llvm-svn: 350035
It's dangerous to knowingly create an illegal vector type
no matter what stage of combining we're in.
This prevents the missed folding/scalarization seen in:
https://bugs.llvm.org/show_bug.cgi?id=40146
llvm-svn: 350034
Trying to keep these patches super small so they're easily post-commit
verifiable, as requested in D44748.
srcSize is derived from the size of an alloca, and we quit out if the
size of that is > the size of the thing we're copying to. Hence, we
should always copy everything over, so these sizes are precise.
Don't make srcSize itself a LocationSize, since optionality isn't
helpful, and we do some comparisons against other sizes elsewhere in
that function.
llvm-svn: 350019