This is similar to the existing Recycler allocator, but instead of
recycling individual objects from a BumpPtrAllocator, arrays of
different sizes can be allocated.
llvm-svn: 171581
wall time, user time, and system time since a process started.
For walltime, we currently use TimeValue's interface and a global
initializer to compute a close approximation of total process runtime.
For user time, this adds support for an somewhat more precise timing
mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock
selected.
For system time, we have to do a full getrusage call to extract the
system time from the OS. This is expensive but unavoidable.
In passing, clean up the implementation of the old APIs and fix some
latent bugs in the Windows code. This might have manifested on Windows
ARM systems or other systems with strange 64-bit integer behavior.
The old API for this both user time and system time simultaneously from
a single getrusage call. While this results in fewer system calls, it
also results in a lower precision user time and if only user time is
desired, it introduces a higher overhead. It may be worthwhile to switch
some of the pass timers to not track system time and directly track user
and wall time. The old API also tracked walltime in a confusing way --
it just set it to the current walltime rather than providing any measure
of wall time since the process started the way buth user and system time
are tracked. The new API is more consistent here.
The plan is to eventually implement these methods for a *child* process
by using the wait3(2) system call to populate an rusage struct
representing the whole subprocess execution. That way, after waiting on
a child process its stats will become accurate and cheap to query.
llvm-svn: 171551
The iplist::clear() function can be quite expensive because it traverses
the entire list, calling deleteNode() and removeNodeFromList() on each
element. If node destruction and deallocation can be handled some other
way, clearAndLeakNodesUnsafely() can be used to jettison all nodes
without bringing them into cache.
The function name is meant to be ominous.
llvm-svn: 171540
* Add support for specifying the alignment to use.
* Add the concept of native endianness. Used for unaligned native types.
The native alignment and read/write simplification is based on a patch by Richard Smith.
llvm-svn: 171406
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Implement the old API in terms of the new one. This simplifies the
implementation on Windows which can now re-use the self_process's once
initialization.
llvm-svn: 171330
This adds AlignedCharArray<Alignment, Size>. A templated struct that contains
a member named buffer of type char[Size] that is aligned to Alignment.
llvm-svn: 171319
The coding style used here is not LLVM's style because this is modeled
after a Boost interface and thus done in the style of a candidate C++
standard library interface. I'll probably end up proposing it as
a standard C++ library if it proves to be reasonably portable and
useful.
This is just the most basic parts of the interface -- getting the
process ID out of it. However, it helps sketch out some of the boiler
plate such as the base class, derived class, shared code, and static
factory function. It also introduces a unittest so that I can
incrementally ensure this stuff works.
However, I've not even compiled this code for Windows yet. I'll try to
fix any Windows fallout from the bots, and if I can't fix it I'll revert
and get someone on Windows to help out. There isn't a lot more that is
mandatory, so soon I'll switch to just stubbing out the Windows side and
get Michael Spencer to help with implementation as he can test it
directly.
llvm-svn: 171289
The single-element ilist::splice() function supports a noop move:
List.splice(I, List, I);
The corresponding std::list function doesn't allow that, so add a unit
test to document that behavior.
This also means that
List.splice(I, List, F);
is somewhat surprisingly not equivalent to
List.splice(I, List, F, next(F));
This patch adds an assertion to catch the illegal case I == F above.
Alternatively, we could make I == F a legal noop, but that would make
ilist differ even more from std::list.
llvm-svn: 170443
structures to and from YAML using traits. The first client will
be the test suite of lld. The documentation will show up at:
http://llvm.org/docs/YamlIO.html
llvm-svn: 170019
Rationale:
1) This was the name in the comment block. ;]
2) It matches Clang's __has_feature naming convention.
3) It matches other compiler-feature-test conventions.
Sorry for the noise. =]
I've also switch the comment block to use a \brief tag and not duplicate
the name.
llvm-svn: 168996
appropriate unit tests. This change in itself is not expected to
affect any functionality at this point, but it will serve as a
stepping stone to improve FileCheck's variable matching capabilities.
Luckily, our regex implementation already supports backreferences,
although a bit of hacking is required to enable it. It supports both
Basic Regular Expressions (BREs) and Extended Regular Expressions
(EREs), without supporting backrefs for EREs, following POSIX strictly
in this respect. And EREs is what we actually use (rightly). This is
contrary to many implementations (including the default on Linux) of
POSIX regexes, that do allow backrefs in EREs.
Adding backref support to our EREs is a very simple change in the
regcomp parsing code. I fail to think of significant cases where it
would clash with existing things, and can bring more versatility to
the regexes we write. There's always the danger of a backref in a
specially crafted regex causing exponential matching times, but since
we mainly use them for testing purposes I don't think it's a big
problem. [it can also be placed behind a flag specific to FileCheck,
if needed].
For more details, see:
* http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-November/055840.html
* http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121126/156878.html
llvm-svn: 168802
The SectionMemoryManager now supports (and requires) applying section-specific page permissions. Clients using this memory manager must call either MCJIT::finalizeObject() or SectionMemoryManager::applyPermissions() before executing JITed code.
See r168718 for changes from the previous implementation.
llvm-svn: 168721
This commit is primarily here for the revision history. I'm about to move the SectionMemoryManager into the RuntimeDyld library, but I wanted to check the changes in here so people could see the differences in the updated implementation.
llvm-svn: 168718
The rationale is to get YAML filenames in diagnostics from
yaml::Stream::printError -- currently the filename is hard-coded as
"YAML" because there's no buffer information available.
Patch by Kim Gräsman!
llvm-svn: 168341
These tests were all failing since the old JIT doesn't work
for PowerPC (any more), and there are no plans to attempt to
fix it again (instead, work focuses on MCJIT).
llvm-svn: 167133
treating it as if it were an IEEE floating-point type with 106-bit
mantissa.
This makes compile-time arithmetic on "long double" for PowerPC
in clang (in particular parsing of floating point constants)
work, and fixes all "long double" related failures in the test
suite.
llvm-svn: 166951
When building with LTO, the internalize pass is hiding some global symbols
that are necessary for the JIT unittests. It seems like that may be a bug in
LTO to do that by default, but until that gets fixed, this change makes sure
that we export the necessary symbols for the tests to pass.
llvm-svn: 166220
Additionally, all such cases are handled with no dynamic check.
All `classof()` of the form
class Foo {
[...]
static bool classof(const Bar *) { return true; }
[...]
}
where Foo is an ancestor of Bar are no longer necessary.
Don't write them!
Note: The exact test is `is_base_of<Foo, Bar>`, which is non-strict, so
that Foo is considered an ancestor of itself.
This leads to the following rule of thumb for LLVM-style RTTI:
The argument type of `classof()` should be a strict ancestor.
For more information about implementing LLVM-style RTTI, see
docs/HowToSetUpLLVMStyleRTTI.rst
llvm-svn: 165765
- The current_pos function is supposed to return all the written bytes, not the
current position of the underlying stream.
- This caused tell() to be broken whenever the underlying stream had buffered
content.
llvm-svn: 163948
TinyPtrVector. With these, it is sufficiently functional for my more
normal / pedestrian uses.
I've not included some r-value reference stuff here because the value
type for a TinyPtrVector is, necessarily, just a pointer.
I've added tests that cover the basic behavior of these routines, but
they aren't as comprehensive as I'd like. In particular, they don't
really test the iterator semantics as thoroughly as they should. Maybe
some brave soul will feel enterprising and flesh them out. ;]
llvm-svn: 161104