We only need the C++ type and the corresponding TF Enum. The other
parameter was used for the output spec json file, but we can just
standardize on the C++ type name there.
Differential Revision: https://reviews.llvm.org/D86549
These were implementation detail, but become necessary for generic data
copying.
Also added const variations to them, and move assignment, since we had a
move ctor (and the move assignment helps in a subsequent patch).
Differential Revision: https://reviews.llvm.org/D85262
Added a mechanism to check the element type, get the total element
count, and the size of an element.
Differential Revision: https://reviews.llvm.org/D85250
A JSON->TensorSpec utility we will use subsequently to specify
additional outputs needed for certain training scenarios.
Differential Revision: https://reviews.llvm.org/D84976
As discussed on D81500, this adds a more general ElementCount variant of the build helper and converts the (non-scalable) unsigned NumElts variant to use it internally.
Further abstracting the specification of a tensor, to more easily
support different types and shapes of tensor, and also to perform
initialization up-front, at TFModelEvaluator construction time.
Differential Revision: https://reviews.llvm.org/D84685
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
(This reverts commit a5e0194709c40212694370e0ea789a1ca14548b5, and
corrects author).
Rename the pass to be able to extend it to function properties other than inliner features.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D82044
Rename the pass to be able to extend it to function properties other than inliner features.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D82044
This patch
- adds `canCreateUndefOrPoison`
- refactors `canCreatePoison` so it can deal with constantexprs
`canCreateUndefOrPoison` will be used at D83926.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D84007
due to the performance bugs filed in https://bugs.llvm.org/show_bug.cgi?id=46753.
An SROA change soon may obviate some of these problems.
This reverts commit 8d09f20798ac180b1749276bff364682ce0196ab.
Summary:
This change avoids exposing tensorflow types when including TFUtils.h.
They are just an implementation detail, and don't need to be used
directly when implementing an analysis requiring ML model evaluation.
The TFUtils APIs, while generically typed, are still not exposed unless
the tensorflow C library is present, as they currently have no use
otherwise.
Reviewers: mehdi_amini, davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83843
Summary:
This allows users of the llvm library discover whether llvm was built
with the tensorflow c API dependency, which helps if using the TFUtils
wrapper, for example.
We don't do the same for the LLVM_HAVE_TF_AOT flag, because that does
not expose any API.
Reviewers: mehdi_amini, davidxl
Subscribers: mgorny, aaron.ballman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83746
This reverts commit 9908a3b9f521c954cbf6adcec35b14b2f6c8da49.
The fix was to exclude the content of TFUtils.h (automatically
included in the LLVM_Analysis module, when LLVM_ENABLE_MODULES is enabled).
Differential Revision: https://reviews.llvm.org/D82817
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: thopre, yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Summary:
This is an experimental ML-based native size estimator, necessary for
computing partial rewards during -Oz inliner policy training. Data
extraction for model training will be provided in a separate patch.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140763.html
Reviewers: davidxl, jdoerfert
Subscribers: mgorny, hiraditya, mgrang, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82817
Summary: This patch moves OrderedInstructions to CodeMoverUtils as It was
the only place where OrderedInstructions is required.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto, fhahn, nikic
Reviewed By: Whitney, nikic
Subscribers: mgorny, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80643
Assume bundle can have more than one entry with the same name,
but at least AlignmentFromAssumptionsPass::extractAlignmentInfo() uses
getOperandBundle("align"), which internally assumes that it isn't the
case, and happily crashes otherwise.
Minimal reduced reproducer: run `opt -alignment-from-assumptions` on
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%0 = type { i64, %1*, i8*, i64, %2, i32, %3*, i8* }
%1 = type opaque
%2 = type { i8, i8, i16 }
%3 = type { i32, i32, i32, i32 }
; Function Attrs: nounwind
define i32 @f(%0* noalias nocapture readonly %arg, %0* noalias %arg1) local_unnamed_addr #0 {
bb:
call void @llvm.assume(i1 true) [ "align"(%0* %arg, i64 8), "align"(%0* %arg1, i64 8) ]
ret i32 0
}
; Function Attrs: nounwind willreturn
declare void @llvm.assume(i1) #1
attributes #0 = { nounwind "reciprocal-estimates"="none" }
attributes #1 = { nounwind willreturn }
This is what we'd have with -mllvm -enable-knowledge-retention
This reverts commit c95ffadb2474a4d8c4f598d94d35a9f31d9606cb.
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Move ScalarEvolution::forgetLoopDispositions implementation to ScalarEvolution.cpp to remove the dependency.
Add implicit header dependency to source files where necessary.
The initial intent was to organize ML stuff in its own directory, but
it turns out that conflicts with llvm component layering policies: it
is not a component, because subsequent changes want to rely on other
analyses, which would create a cycle; and we don't have a reliable,
cross-platform mechanism to compile files in a subdirectory, and fit in
the existing LLVM build structure.
This change moves the files into Analysis, and subsequent changes will
leverage conditional compilation for those that have optional
dependencies.
Summary:
Currently, add_llvm_library would create an OBJECT library alongside
of a STATIC / SHARED library, but losing the link interface (its
elements would become dependencies instead). To support scenarios
where linking an object library also brings in its usage
requirements, this patch adds support for 'stand-alone' OBJECT
libraries - i.e. without an accompanying SHARED/STATIC library, and
maintaining the link interface defined by the user.
The support is via a new option, OBJECT_ONLY, to avoid breaking changes
- since just specifying "OBJECT" would currently imply also STATIC or
SHARED, depending on BUILD_SHARED_LIBS.
This is useful for cases where, for example, we want to build a part
of a component separately. Using a STATIC target would incur the risk
that symbols not referenced in the consumer would be dropped (which may
be undesirable).
The current application is the ML part of Analysis. It should be part
of the Analysis component, so it may reference other analyses; and (in
upcoming changes) it has dependencies on optional libraries.
Reviewers: karies, davidxl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81447
Summary:
When an SCC got split due to inlining, we have two mechanisms for reprocessing the updated SCC, first is UR.UpdatedC
that repeatedly rerun the new, current SCC; second is a worklist for all newly split SCCs. We can avoid rerun of
the same SCC when the SCC is set to be processed by both mechanisms *back to back*. In pathological cases, such redundant
rerun could cause exponential size growth due to inlining along cycles, even when there's no SCC mutation and hence
convergence is not a problem.
Note that it's ok to have SCC updated and rerun immediately, and also in the work list if we have actually moved an SCC
to be topologically "below" the current one due to merging. In that case, we will need to revisit the current SCC after
those moved SCCs. For that reason, the redundant avoidance here only targets back to back rerun of the same SCC - the
case described by the now removed FIXME comment.
Reviewers: chandlerc, wmi
Subscribers: llvm-commits, hoy
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80589
Summary:
The working set size heuristics (ProfileSummaryInfo::hasHugeWorkingSetSize)
under the partial sample PGO may not be accurate because the profile is partial
and the number of hot profile counters in the ProfileSummary may not reflect the
actual working set size of the program being compiled.
To improve this, the (approximated) ratio of the the number of profile counters
of the program being compiled to the number of profile counters in the partial
sample profile is computed (which is called the partial profile ratio) and the
working set size of the profile is scaled by this ratio to reflect the working
set size of the program being compiled and used for the working set size
heuristics.
The partial profile ratio is approximated based on the number of the basic
blocks in the program and the NumCounts field in the ProfileSummary and computed
through the thin LTO indexing. This means that there is the limitation that the
scaled working set size is available to the thin LTO post link passes only.
Reviewers: davidxl
Subscribers: mgorny, eraman, hiraditya, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79831