Summary:
This patch supports `.eventtype` directive printing and parsing in the
same syntax with `.functype`.
Reviewers: aardappel, sbc100
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55353
llvm-svn: 348818
This change makes DT_SONAME treated as an optional trait for ELF TextAPI
stubs. This change accounts for the fact that shared objects aren't
guaranteed to have a DT_SONAME entry. Tests have been updated to check
for correct behavior of an optional soname.
Differential Revision: https://reviews.llvm.org/D55533
llvm-svn: 348817
Summary:
- Unify mixed argument names (`Symbol` and `Sym`) to `Sym`
- Changed `MCSymbolWasm*` argument of `emit***` functions to `const
MCSymbolWasm*`. It seems not very intuitive that emit function in the
streamer modifies symbol contents.
- Moved empty function bodies to the header
- clang-format
Reviewers: aardappel, dschuff, sbc100
Subscribers: jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55347
llvm-svn: 348816
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
Not sure how I missed that in my testing, but obvious enough - this
causes segfaults when attempting to dereference the Error in end
iterators.
llvm-svn: 348814
Using an Error as an out parameter from an indirect operation like
iteration as described in the documentation (
http://llvm.org/docs/ProgrammersManual.html#building-fallible-iterators-and-iterator-ranges
) seems to be a little fussy - so here's /one/ possible solution, though
I'm not sure it's the right one.
Alternatively such APIs may be better off being switched to a standard
algorithm style, where they take a lambda to do the iteration work that
is then called back into (eg: "Error e = obj.for_each_note([](const
Note& N) { ... });"). This would be safer than having an unwritten
assumption that the user of such an iteration cannot return early from
the inside of the function - and must always exit through the gift
shop... I mean error checking. (even though it's guaranteed that if
you're mid-way through processing an iteration, it's not in an error
state).
Alternatively we'd need some other (the super untrustworthy/thing we've
generally tried to avoid) error handling primitive that actually clears
the error state entirely so it's safe to ignore.
Fleshed this solution out a bit further during review - it now relies on
op==/op!= comparison as the equivalent to "if (Err)" testing the Error.
So just like an Error must be checked (even if it's in a success state),
the Error hiding in the iterator must be checked after each increment
(including by comparison with another iterator - perhaps this could be
constrained to only checking if the iterator is compared to the end
iterator? Not sure it's too important).
So now even just creating the iterator and not incrementing it at all
should still assert because the Error has not been checked.
Reviewers: lhames, jakehehrlich
Differential Revision: https://reviews.llvm.org/D55235
llvm-svn: 348811
Mucking about simplifying a test case ( https://reviews.llvm.org/D55261 ) I stumbled across something I've hit before - that LLVM's (GCC's does too, FWIW) assembly output includes a hardcode length for a DWARF unit in its header. Instead we could emit a label difference - making the assembly easier to read/edit (though potentially at a slight (I haven't tried to observe it) performance cost of delaying/sinking the length computation into the MC layer).
Reviewers: JDevlieghere, probinson, ABataev
Differential Revision: https://reviews.llvm.org/D55281
llvm-svn: 348806
A dependency on TestingSupport was introduced in rL348735 but
library was not incldued in the LLVM_LINK_LLVM_DYLIB build.
Differential Revision: https://reviews.llvm.org/D55526
llvm-svn: 348803
- Check if an operand is an immediate before calling getImm. Some operands
that take constant values can actually have global symbols or other
constant expressions.
- When a load-constant instruction can be folded into users, make sure to
only delete it when all users have been successfully converted.
llvm-svn: 348802
Summary: The APFloat and Constant APIs taking an APInt allow arbitrary payloads,
and that's great. There's a convenience API which takes an unsigned, and that's
silly because it then directly creates a 64-bit APInt. Just change it to 64-bits
directly.
At the same time, add ConstantFP NaN getters which match the APFloat ones (with
getQNaN / getSNaN and APInt parameters).
Improve the APFloat testing to set more payload bits.
Reviewers: scanon, rjmccall
Subscribers: jkorous, dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D55460
llvm-svn: 348791
This patch restricts the capability of G_MERGE_VALUES, and uses the new
G_BUILD_VECTOR and G_CONCAT_VECTORS opcodes instead in the appropriate places.
This patch also includes AArch64 support for selecting G_BUILD_VECTOR of <4 x s32>
and <2 x s64> vectors.
Differential Revisions: https://reviews.llvm.org/D53629
llvm-svn: 348788
If all the demanded elements of the SimplifyDemandedVectorElts are known to be UNDEF, we can simplify to an ISD::UNDEF node.
Zero constant folding will be handled in a future patch - its a little trickier as we often have bitcasted zero values.
Differential Revision: https://reviews.llvm.org/D55511
llvm-svn: 348784
As discussed on D55511, this caused an issue if the inner node deletes a node that the outer node depends upon. As it doesn't affect any lit-tests and I've only been able to expose this with the D55511 change I'm committing this now.
llvm-svn: 348781
This should really be generalized to allow increment and/or
we should replace it by using ISD::matchUnaryPredicate().
See D55515 for context.
llvm-svn: 348776
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, for the Exynos processors.
Differential revision: https://reviews.llvm.org/D55345
llvm-svn: 348774
This commit changes which l1 flush instruction is used for AMDPAL and
MESA3d workloads to flush the entire l1 cache instead of just the
volatile lines.
Differential Revision: https://reviews.llvm.org/D55367
llvm-svn: 348771
Refactor the scheduling predicates based on `MCInstPredicate`. Augment the
number of helper predicates used by processor specific predicates.
Differential revision: https://reviews.llvm.org/D55375
llvm-svn: 348768
Record the stack protector index in MachineFrameInfo when translating
Intrinsic::stackprotector similarly as is done by SelectionDAG when
processing the same intrinsic.
Setting this index allows the Prologue/Epilogue Insertion to recognize
that the stack protection is enabled. The pass can then make sure that
the stack protector comes before local variables on the stack and
assigns potentially vulnerable objects first so they are close to the
stack protector slot.
Differential Revision: https://reviews.llvm.org/D55418
llvm-svn: 348761
When replacing jal with jalr, also emit '.reloc R_MIPS_JALR' (R_MICROMIPS_JALR
for micromips). The linker might then be able to turn jalr into a direct
call.
Add '-mips-jalr-reloc' to enable/disable this feature (default is true).
Differential revision: https://reviews.llvm.org/D55292
llvm-svn: 348760
This triggers an assert when combining concat_vectors of a bitcast of
merge_values.
With asserts disabled, it fails to select:
fatal error: error in backend: Cannot select: 0x7ff19d000e90: i32 = any_extend 0x7ff19d000ae8
0x7ff19d000ae8: f64,ch = CopyFromReg 0x7ff19d000c20:1, Register:f64 %1
0x7ff19d000b50: f64 = Register %1
In function: d
Differential Revision: https://reviews.llvm.org/D55507
llvm-svn: 348759
The list generated in the target parser tests is the
same as the one in the AArch64 target parser.
Use that one instead.
Differential Revision: https://reviews.llvm.org/D55509
llvm-svn: 348757
A new pass to manage the Mode register.
Currently this just manages the floating point double precision
rounding requirements, but is intended to be easily extended to
encompass all Mode register settings.
The immediate motivation comes from the requirement to use the
round-to-zero rounding mode for the 16 bit interpolation
instructions, where the rounding mode setting is shared between
16 and 64 bit operations.
llvm-svn: 348754
Currently, dbg.value's of "nullptr" are dropped when entering a SelectionDAG --
apparently just because of an oversight when recognising Values that are
constant (see PR39787). This patch adds ConstantPointerNull to the list of
constants that can be turned into DBG_VALUEs.
The matter of what bit-value a null pointer constant in LLVM has was raised
in this mailing list thread:
http://lists.llvm.org/pipermail/llvm-dev/2018-December/128234.html
Where it transpires LLVM relies on (IR) null pointers being zero valued,
thus I've baked this assumption into the patch.
Differential Revision: https://reviews.llvm.org/D55227
llvm-svn: 348753
This is a fix for PR39896, where dbg.value's of SDNodes that have been
optimised out do not lead to "DBG_VALUE undef" instructions being created.
Such undef instructions are necessary to terminate earlier variable
ranges, otherwise variable values leak past the point where they're valid.
The "invalidated" flag of SDDbgValue is currently being abused to mean two
things:
* The corresponding SDNode is now invalid
* This SDDbgValue should not be emitted
Of which there are several legitimate combinations of meaning:
* The SDNode has been invalidated and we should emit "DBG_VALUE undef"
* The SDNode has been invalidated but the debug data was salvaged, don't
emit anything for this SDDbgValue
* This SDDbgValue has been emitted
This patch introduces distinct "Emitted" and "Invalidated" fields to the
SDDbgValue class, updates users accordingly, and generates "undef"
DBG_VALUEs for invalidated records. Awkwardly, there are circumstances
where we emit SDDbgValue's twice, specifically DebugInfo/X86/dbg-addr-dse.ll
which I've preserved.
Differential Revision: https://reviews.llvm.org/D55372
llvm-svn: 348751
Fixes https://bugs.llvm.org/show_bug.cgi?id=39926.
The size of the first copy was computed as
std::abs(std::abs(LdDisp2) - std::abs(LdDisp1)), which results in
skipped bytes if the signs of LdDisp2 and LdDisp1 differ. As far as
I can see, this should just be LdDisp2 - LdDisp1. The case where
LdDisp1 > LdDisp2 is already handled in the code above, in which case
LdDisp2 is set to LdDisp1 and this subtraction will evaluate to
Size1 = 0, which is the correct value to skip an overlapping copy.
Differential Revision: https://reviews.llvm.org/D55485
llvm-svn: 348750
Summary: This should avoid failing on old CPUs that do not have a cycle counter.
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D55416
llvm-svn: 348740
Summary: The comment says we need 3 extracts and a select at the end. But didn't we just account for the select in the vector cost above. Aren't we just extracting the single element after taking the min/max in the vector register?
Reviewers: RKSimon, spatel, ABataev
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55480
llvm-svn: 348739
Both intrinsics do the exact same thing so we really only need one.
Earlier in the 8.0 cycle we changed the signature of this intrinsic without renaming it. But it looks difficult to get the autoupgrade code to allow me to merge the intrinsics and change the signature at the same time. So I've renamed the intrinsic slightly for the new merged intrinsic. I'm skipping autoupgrading from the previous new to 8.0 signature. I've also renamed the subborrow for consistency.
llvm-svn: 348737
Since TBEHandler doesn't maintain state or otherwise have any need to be
a class right now, the read and write functions have been moved out and
turned into standalone functions. Additionally, the TBE read function
has been updated to return an Expected value for better error handling.
Tests have been updated to reflect these changes.
Differential Revision: https://reviews.llvm.org/D55450
llvm-svn: 348735
Summary:
When bugpoint attempts to find the other executables it needs to run,
such as `opt` or `clang`, it tries searching the user's PATH. However,
in many cases, the 'bugpoint' executable is part of an LLVM build, and
the 'opt' executable it's looking for is in that same directory.
Many LLVM tools handle this case by using the `Paths` parameter of
`llvm::sys::findProgramByName`, passing the parent path of the currently
running executable. Do this same thing for bugpoint. However, to
preserve the current behavior exactly, first search the user's PATH,
and then search for 'opt' in the directory containing 'bugpoint'.
Test Plan:
`check-llvm`. Many of the existing bugpoint tests no longer need to use the
`--opt-command` option as a result of these changes.
Reviewers: MatzeB, silvas, davide
Reviewed By: MatzeB, davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D54884
llvm-svn: 348734
Summary:
`llvm::AttributeList` and `llvm::AttributeSet` are immutable, and so methods
defined on these classes, such as `addAttribute`, return a new immutable
object with the attribute added. In https://reviews.llvm.org/D55217 I attempted
to annotate methods such as `addAttribute` with `LLVM_NODISCARD`, since
calling these methods has no side-effects, and so ignoring the result
that is returned is almost certainly a programmer error.
However, committing the change resulted in new warnings in the AMDGPU target.
The AMDGPU simplify libcalls pass added in https://reviews.llvm.org/D36436
attempts to add the readonly and nounwind attributes to simplified
library functions, but instead calls the `addAttribute` methods and
ignores the result.
Modify the simplify libcalls pass to actually add the nounwind and
readonly attributes. Also update the simplify libcalls test to assert
that these attributes are actually being set.
Reviewers: rampitec, vpykhtin, rnk
Reviewed By: rampitec
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D55435
llvm-svn: 348732