1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 05:52:53 +02:00
Commit Graph

1868 Commits

Author SHA1 Message Date
Philip Reames
46cd55f309 [InstCombine] Extend peephole DSE to handle unordered atomics
This extends the same line of reasoning used in EarlyCSE w/http://reviews.llvm.org/D15352 to the DSE implementation in InstCombine.

Key points:
 * We only remove unordered or simple stores.
 * The loads producing values consumed by dead stores don't influence whether the store is dead.

Differential Revision: http://reviews.llvm.org/D15354

llvm-svn: 255932
2015-12-17 22:19:27 +00:00
Nicolai Hahnle
2aeb81a126 AMDGPU: mark ldexp LibCalls as unavailable
Summary:
The LibCallSimplifier will turn llvm.exp2.* intrinsics into ldexp* libcalls
which do not make sense with the AMDGPU backend.

In the long run, we'll want an llvm.ldexp.* intrinsic to properly make use of
this optimization, but this works around the problem for now.

See also: http://reviews.llvm.org/D14327 (suggested llvm.ldexp.* implementation)
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=92709

Reviewers: arsenm, tstellarAMD

Differential Revision: http://reviews.llvm.org/D14990

llvm-svn: 255658
2015-12-15 17:24:15 +00:00
Mehdi Amini
b29b50a9dd Instcombine: destructor loads of structs that do not contains padding
For non padded structs, we can just proceed and deaggregate them.
We don't want ot do this when there is padding in the struct as to not
lose information about this padding (the subsequents passes would then
try hard to preserve the padding, which is undesirable).

Also update extractvalue.ll and cast.ll so that they use structs with padding.

Remove the FIXME in the extractvalue of laod case as the non padded case is
handled when processing the load, and we don't want to do it on the padded
case.

Patch by: Amaury SECHET <deadalnix@gmail.com>

Differential Revision: http://reviews.llvm.org/D14483

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 255600
2015-12-15 01:44:07 +00:00
Sanjay Patel
14a74b66f7 add fast-math-flags to 'call' instructions (PR21290)
This patch adds optional fast-math-flags (the same that apply to fmul/fadd/fsub/fdiv/frem/fcmp)
to call instructions in IR. Follow-up patches would use these flags in LibCallSimplifier, add 
support to clang, and extend FMF to the DAG for calls.

Motivating example:

%y = fmul fast float %x, %x
%z = tail call float @sqrtf(float %y)

We'd like to be able to optimize sqrt(x*x) into fabs(x). We do this today using a function-wide
attribute for unsafe-math, but we really want to trigger on the instructions themselves:

%z = tail call fast float @sqrtf(float %y)

because in an LTO build it's possible that calls with fast semantics have been inlined into a
function with non-fast semantics.

The code changes and tests are based on the recent commits that added "notail":
http://reviews.llvm.org/rL252368

and added FMF to fcmp:
http://reviews.llvm.org/rL241901

Differential Revision: http://reviews.llvm.org/D14707

llvm-svn: 255555
2015-12-14 21:59:03 +00:00
Sanjay Patel
0876eb09e0 [InstCombine] fold trunc ([lshr] (bitcast vector) ) --> extractelement (PR25543)
This is a fix for PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543

The idea is to take the existing fold of:
bitcast ( trunc ( lshr ( bitcast X))) --> extractelement (bitcast X)
( http://reviews.llvm.org/rL112232 )

And break it into less specific transforms so we'll catch more cases such as
the example in the bug report:
bitcast ( trunc ( lshr ( bitcast X))) -->
bitcast ( extractelement (bitcast X)) -->
extractelement (bitcast X)

Enabling patches for this change:
http://reviews.llvm.org/rL255399 (combine bitcasts)
http://reviews.llvm.org/rL255433 (canonicalize extractelement(bitcast X))

Differential Revision: http://reviews.llvm.org/D15392

llvm-svn: 255504
2015-12-14 16:16:54 +00:00
Sanjay Patel
3f624d4650 [InstCombine] canonicalize (bitcast (extractelement X)) --> (extractelement(bitcast X))
This change was discussed in D15392. It allows us to remove the fold that was added
in:
http://reviews.llvm.org/r255261

...and it will allow us to generalize this fold:
http://reviews.llvm.org/rL112232

while preserving the order of bitcast + extract that it produces and testing shows
is better handled by the backend.

Note that the existing check for "isVectorTy()" wasn't strong enough in general
and specifically because: x86_mmx. It's not a vector, but it's not vectorizable
either. So here we check VectorType::isValidElementType() directly before 
proceeding with the transform.

llvm-svn: 255433
2015-12-12 16:44:48 +00:00
David Majnemer
bf189bdcd7 [IR] Reformulate LLVM's EH funclet IR
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
  but they are difficult to explain to others, even to seasoned LLVM
  experts.
- catchendpad and cleanupendpad are optimization barriers.  They cannot
  be split and force all potentially throwing call-sites to be invokes.
  This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
  It is unsplittable, starts a funclet, and has control flow to other
  funclets.
- The nesting relationship between funclets is currently a property of
  control flow edges.  Because of this, we are forced to carefully
  analyze the flow graph to see if there might potentially exist illegal
  nesting among funclets.  While we have logic to clone funclets when
  they are illegally nested, it would be nicer if we had a
  representation which forbade them upfront.

Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
  flow, just a bunch of simple operands;  catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
  the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
  the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad.  Their presence can be inferred
  implicitly using coloring information.

N.B.  The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for.  An expert should take a
look to make sure the results are reasonable.

Reviewers: rnk, JosephTremoulet, andrew.w.kaylor

Differential Revision: http://reviews.llvm.org/D15139

llvm-svn: 255422
2015-12-12 05:38:55 +00:00
Sanjay Patel
ceecde00d5 [InstCombine] allow any pair of bitcasts to be combined
This change is discussed in D15392 and should allow us to effectively
revert:
http://llvm.org/viewvc/llvm-project?view=revision&revision=255261
if we canonicalize bitcasts ahead of extracts.

It should be safe to convert any pair of bitcasts into a single bitcast, 
however, it was mentioned here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20110829/127089.html
that we're not allowed to bitcast from an x86_mmx to some other types, but I'm 
not seeing any failures from that, and we have regression tests in CodeGen/X86
that appear to cover all of those cases. 

Some day we'll get to remove that MMX wart from LLVM IR completely?

Differential Revision: http://reviews.llvm.org/D15468

llvm-svn: 255399
2015-12-12 00:33:36 +00:00
Sanjay Patel
6151d885e6 use FileCheck for better checking
llvm-svn: 255394
2015-12-12 00:01:10 +00:00
Sanjay Patel
5d71fe5292 Add tests for bitcast-bitcast sequences for all scalar/vector permutations
As noted in http://reviews.llvm.org/D15392 , we should be able to improve this.

llvm-svn: 255370
2015-12-11 20:26:30 +00:00
James Molloy
d8003c7bf6 [InstCombine] Make MatchBSwap also match bit reversals
MatchBSwap has most of the functionality to match bit reversals already. If we switch it from looking at bytes to individual bits and remove a few early exits, we can extend the main recursive function to match any sequence of ORs, ANDs and shifts that assemble a value from different parts of another, base value. Once we have this bit->bit mapping, we can very simply detect if it is appropriate for a bswap or bitreverse.

llvm-svn: 255334
2015-12-11 10:04:51 +00:00
Sanjay Patel
25a4b4195f [InstCombine] fold bitcasts around an extractelement (3rd try)
This is a redo of r255137 (reverted at r255227) which was a redo of 
r255124 (reverted at r255126) with a fixed check for a scalar source 
type and an added test for the failure that caused the revert.

Original commit message:

Example:
  bitcast (extractelement (bitcast <2 x float> %X to <2 x i32>), 1) to float
    --->
  extractelement <2 x float> %X, i32 1

This is part of fixing PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543

The next step will be to generalize this fold:
trunc ( lshr ( bitcast X) ) -> extractelement (X)

Ie, I'm hoping to replace the existing transform of:
bitcast ( trunc ( lshr ( bitcast X)))
added by:
http://reviews.llvm.org/rL112232

with 2 less specific transforms to catch the case in the bug report.

Differential Revision: http://reviews.llvm.org/D14879

llvm-svn: 255261
2015-12-10 17:09:28 +00:00
Akira Hatanaka
a1488717da Revert r255137.
This commit broke apple's internal bot.

llvm-svn: 255227
2015-12-10 08:00:52 +00:00
Sanjay Patel
de6f59d487 [InstCombine] fold bitcasts around an extractelement (2nd try)
This is a redo of r255124 (reverted at r255126) with an added check for a
scalar destination type and an added test for the failure seen in Clang's
test/CodeGen/vector.c. The extra test shows a different missing optimization.

Original commit message:

Example:
  bitcast (extractelement (bitcast <2 x float> %X to <2 x i32>), 1) to float
    --->
  extractelement <2 x float> %X, i32 1

This is part of fixing PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543

The next step will be to generalize this fold:
trunc ( lshr ( bitcast X) ) -> extractelement (X)

Ie, I'm hoping to replace the existing transform of:
bitcast ( trunc ( lshr ( bitcast X)))
added by:
http://reviews.llvm.org/rL112232

with 2 less specific transforms to catch the case in the bug report.

Differential Revision: http://reviews.llvm.org/D14879

llvm-svn: 255137
2015-12-09 18:57:16 +00:00
Mehdi Amini
de04fa6b68 Revert "[InstCombine] fold bitcasts around an extractelement"
This reverts commit r255124.

Broke http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/builds/4193/steps/test/logs/stdio

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 255126
2015-12-09 16:31:39 +00:00
Sanjay Patel
8a5018320c [InstCombine] fold bitcasts around an extractelement
Example:
  bitcast (extractelement (bitcast <2 x float> %X to <2 x i32>), 1) to float
    --->
  extractelement <2 x float> %X, i32 1

This is part of fixing PR25543:
https://llvm.org/bugs/show_bug.cgi?id=25543

The next step will be to generalize this fold:
trunc ( lshr ( bitcast X) ) -> extractelement (X)

Ie, I'm hoping to replace the existing transform of:
bitcast ( trunc ( lshr ( bitcast X)))
added by:
http://reviews.llvm.org/rL112232

with 2 less specific transforms to catch the case in the bug report.

Differential Revision: http://reviews.llvm.org/D14879

llvm-svn: 255124
2015-12-09 16:17:20 +00:00
Sanjoy Das
16ad4f2471 [InstCombine] Call getCmpPredicateForMinMax only with a valid SPF
Summary:
There are `SelectPatternFlavor`s that don't represent min or max idioms,
and we should not be passing those to `getCmpPredicateForMinMax`.

Fixes PR25745.

Reviewers: majnemer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D15249

llvm-svn: 254869
2015-12-05 23:44:22 +00:00
Weiming Zhao
84bd343622 [SimplifyLibCalls] Optimization for pow(x, n) where n is some constant
Summary:
    In order to avoid calling pow function we generate repeated fmul when n is a
    positive or negative whole number.
    
    For each exponent we pre-compute Addition Chains in order to minimize the no.
    of fmuls.
    Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
    
    We pre-compute addition chains for exponents upto 32 (which results in a max of
    7 fmuls).

    For eg:
    4 = 2+2
    5 = 2+3
    6 = 3+3 and so on
    
    Hence,
    pow(x, 4.0) ==> y = fmul x, x
                    x = fmul y, y
                    ret x

    For negative exponents, we simply compute the reciprocal of the final result.
    
    Note: This transformation is only enabled under fast-math.
    
    Patch by Mandeep Singh Grang <mgrang@codeaurora.org>

Reviewers: weimingz, majnemer, escha, davide, scanon, joerg

Subscribers: probinson, escha, llvm-commits

Differential Revision: http://reviews.llvm.org/D13994

llvm-svn: 254776
2015-12-04 22:00:47 +00:00
David Majnemer
dc587eeed6 [Analysis] Become aware of MSVC's new/delete functions
The compiler can take advantage of the allocation/deallocation
function's properties.  We knew how to do this for Itanium but had no
support for MSVC-style functions.

llvm-svn: 254656
2015-12-03 22:45:19 +00:00
David Majnemer
df4ee5c023 Do (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1 rather than (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2 when C1 ^ C2 is a power of 2.
Differential Revision: http://reviews.llvm.org/D14223

Patch by Amaury SECHET!

llvm-svn: 254518
2015-12-02 16:15:07 +00:00
Sanjay Patel
f9793efc69 [InstCombine] add tests to show potential vector IR shuffle transforms
llvm-svn: 254342
2015-11-30 22:39:36 +00:00
Davide Italiano
a4b22c0406 [SimplifyLibCalls] Remove useless bits of this tests.
llvm-svn: 254318
2015-11-30 19:38:35 +00:00
Davide Italiano
0f427b7147 [SimplifyLibCalls] Transform log(exp2(y)) to y*log(2) under fast-math.
llvm-svn: 254317
2015-11-30 19:36:35 +00:00
Davide Italiano
ae7cdf685f [SimplifyLibCalls] Don't crash if the function doesn't have a name.
llvm-svn: 254265
2015-11-29 21:58:56 +00:00
Davide Italiano
85963c8ad6 [SimplifyLibCalls] Tranform log(pow(x, y)) -> y*log(x).
This one is enabled only under -ffast-math. There are cases where the
difference between the value computed and the correct value is huge
even for ffast-math, e.g. as Steven pointed out:

x = -1, y = -4
log(pow(-1), 4) = 0
4*log(-1) = NaN

I checked what GCC does and apparently they do the same optimization
(which result in the dramatic difference). Future work might try to
make this (slightly) less worse.

Differential Revision:	http://reviews.llvm.org/D14400

llvm-svn: 254263
2015-11-29 20:58:04 +00:00
Benjamin Kramer
a5c875d940 [SimplifyLibCalls] Don't depend on a called function having a name, it might be an indirect call.
Fixes the crasher in PR25651 and related crashers using the same pattern.

llvm-svn: 254145
2015-11-26 09:51:17 +00:00
Sanjoy Das
d16b4e5c5e [InstCombine] Don't drop operand bundles
Reviewers: majnemer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D14857

llvm-svn: 254046
2015-11-25 00:42:19 +00:00
Sanjay Patel
cca965412e [InstCombine] fix propagation of fast-math-flags
Noticed while working on D4583:
http://reviews.llvm.org/D4583

llvm-svn: 253997
2015-11-24 17:51:20 +00:00
Rafael Espindola
9cb8841b77 Have a single way for creating unique value names.
We had two code paths. One would create names like "foo.1" and the other
names like "foo1".

For globals it is important to use "foo.1" to help C++ name demangling.
For locals there is no strong reason to go one way or the other so I
kept the most common mangling (foo1).

llvm-svn: 253804
2015-11-22 00:16:24 +00:00
Sanjay Patel
58d25e69b7 move a single test case to where most other instcombine shuffle bug test cases exist
llvm-svn: 253784
2015-11-21 16:12:58 +00:00
Sanjay Patel
c0f869e525 [InstCombine] add tests to show missing trunc optimizations
llvm-svn: 253609
2015-11-19 22:11:52 +00:00
Sanjay Patel
c933d364c7 [InstCombine] add tests to show missing bitcast optimizations
llvm-svn: 253602
2015-11-19 21:32:25 +00:00
Pete Cooper
b753649d63 Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Davide Italiano
4a84641b2a [SimplifyLibCalls] New trick: pow(x, 0.5) -> sqrt(x) under -ffast-math.
Differential Revision:	http://reviews.llvm.org/D14466

llvm-svn: 253521
2015-11-18 23:21:32 +00:00
Pete Cooper
aca4c5cdc6 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
Andrew Kaylor
459ce58049 [EH] Keep filter clauses for types that have been caught.
The instruction combiner previously removed types from filter clauses in Landing Pad instructions if the type had previously been seen in a catch clause.  This is incorrect and prevents unexpected exception handlers from rethrowing the caught type.

Differential Revision: http://reviews.llvm.org/D14669

llvm-svn: 253370
2015-11-17 20:13:04 +00:00
Elena Demikhovsky
d43b8f3050 Fixed GEP visitor in the InstCombine pass.
The current implementation of GEP visitor in InstCombine fails with assertion on Vector GEP with mix of scalar and vector types, like this:

getelementptr double, double* %a, <8 x i32> %i
(It fails to create a "sext" from <8 x i32> to <8 x i64>)

I fixed it and added some tests.

Differential Revision: http://reviews.llvm.org/D14485

llvm-svn: 253162
2015-11-15 08:19:35 +00:00
James Molloy
c1250c50be [InstCombine] Add trivial folding (bitreverse (bitreverse x)) -> x
There are plenty more instcombines we could probably do with bitreverse, but this seems like a very obvious and trivial starting point and was brought up by Hal in his review.

llvm-svn: 252879
2015-11-12 12:39:41 +00:00
David Majnemer
d5f26284b9 [InstCombine] Teach FoldPHIArgZextsIntoPHI about EHPads
FoldPHIArgZextsIntoPHI cannot insert an instruction after the PHI if
there is an EHPad in the BB.  Doing so would result in an instruction
inserted after a terminator.

llvm-svn: 252377
2015-11-07 00:52:53 +00:00
David Majnemer
48f3ee66bd [InstCombine] Don't insert an instruction after a terminator
We tried to insert a cast of a phi in a block whose terminator is an
EHPad.  This is invalid.  Do not attempt the transform in these
circumstances.

llvm-svn: 252370
2015-11-06 23:59:23 +00:00
David Majnemer
9ffc9c11c7 [InstCombine] Don't RAUW tokens with undef
Let SimplifyCFG remove unreachable BBs which define token instructions.

llvm-svn: 252343
2015-11-06 21:26:32 +00:00
Peter Collingbourne
5b721561aa DI: Reverse direction of subprogram -> function edge.
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.

For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.

This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.

Since this is an IR change, a bitcode upgrade has been provided.

Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.

Differential Revision: http://reviews.llvm.org/D14265

llvm-svn: 252219
2015-11-05 22:03:56 +00:00
Davide Italiano
c3b20ee04f [SimplifyLibCalls] New transformation: tan(atan(x)) -> x
This is enabled only under -ffast-math.
So, instead of emitting:
  4007b0:       50                      push   %rax
  4007b1:       e8 8a fd ff ff          callq  400540 <atanf@plt>
  4007b6:       58                      pop    %rax
  4007b7:       e9 94 fd ff ff          jmpq   400550 <tanf@plt>
  4007bc:       0f 1f 40 00             nopl   0x0(%rax)

for:
float mytan(float x) {
  return tanf(atanf(x));
}
we emit a single retq.

Differential Revision:	 http://reviews.llvm.org/D14302

llvm-svn: 252098
2015-11-04 23:36:56 +00:00
Davide Italiano
063a880856 [SimplifyLibCalls] Add a new transformation: pow(exp(x), y) -> exp(x*y)
This one is enabled only under -ffast-math (due to rounding/overflows)
but allows us to emit shorter code.

Before (on FreeBSD x86-64):
4007f0:       50                      push   %rax
4007f1:       f2 0f 11 0c 24          movsd  %xmm1,(%rsp)
4007f6:       e8 75 fd ff ff          callq  400570 <exp2@plt>
4007fb:       f2 0f 10 0c 24          movsd  (%rsp),%xmm1
400800:       58                      pop    %rax
400801:       e9 7a fd ff ff          jmpq   400580 <pow@plt>
400806:       66 2e 0f 1f 84 00 00    nopw   %cs:0x0(%rax,%rax,1)
40080d:       00 00 00

After:
4007b0:       f2 0f 59 c1             mulsd  %xmm1,%xmm0
4007b4:       e9 87 fd ff ff          jmpq   400540 <exp2@plt>
4007b9:       0f 1f 80 00 00 00 00    nopl   0x0(%rax)

Differential Revision:	http://reviews.llvm.org/D14045

llvm-svn: 251976
2015-11-03 20:32:23 +00:00
Tim Northover
58717c5330 TvOS: add missing support for some libcalls.
llvm-svn: 251811
2015-11-02 18:00:00 +00:00
Artur Pilipenko
0dd1f670a9 Preserve load alignment and dereferenceable metadata during some transformations
Reviewed By: hfinkel

Differential Revision: http://reviews.llvm.org/D13953

llvm-svn: 251809
2015-11-02 17:53:51 +00:00
Davide Italiano
572717843f [SimplifyLibCalls] Add test to ensure transform is not executed if fast-math
attribute is not present.

During my refactor in r251595 I changed the behavior of optimizeSqrt(),
skipping the transformation if the function wasn't marked with unsafe-fp-math
attribute. This fixed a bug, as confirmed by Sanjay (before the optimization
was silently executed anyway), although it wasn't my primary aim.
This commit adds a test to ensure the code doesn't break again.

Reported by: Marcello Maggioni
Discussed with: Sanjay Patel

llvm-svn: 251747
2015-10-31 20:59:32 +00:00
Silviu Baranga
8fa79f5d2b [InstCombine] Teach instcombine not to create extra PHI nodes when folding GEPs
Summary:
InstCombine tries to transform GEP(PHI(GEP1, GEP2, ..)) into GEP(GEP(PHI(...))
when possible. However, this may leave the old PHI node around. Even if we
do end up folding the GEPs, having an extra PHI node might not be beneficial.

This change makes the transformation more conservative. We now only do this if
the PHI has only one use, and can therefore be removed after the transformation.

Reviewers: jmolloy, majnemer

Subscribers: mcrosier, mssimpso, llvm-commits

Differential Revision: http://reviews.llvm.org/D13887

llvm-svn: 251281
2015-10-26 10:25:05 +00:00
Hal Finkel
1a64f66683 Handle non-constant shifts in computeKnownBits, and use computeKnownBits for constant folding in InstCombine/Simplify
First, the motivation: LLVM currently does not realize that:

  ((2072 >> (L == 0)) >> 7) & 1 == 0

where L is some arbitrary value. Whether you right-shift 2072 by 7 or by 8, the
lowest-order bit is always zero. There are obviously several ways to go about
fixing this, but the generic solution pursued in this patch is to teach
computeKnownBits something about shifts by a non-constant amount. Previously,
we would give up completely on these. Instead, in cases where we know something
about the low-order bits of the shift-amount operand, we can combine (and
together) the associated restrictions for all shift amounts consistent with
that knowledge. As a further generalization, I refactored all of the logic for
all three kinds of shifts to have this capability. This works well in the above
case, for example, because the dynamic shift amount can only be 0 or 1, and
thus we can say a lot about the known bits of the result.

This brings us to the second part of this change: Even when we know all of the
bits of a value via computeKnownBits, nothing used to constant-fold the result.
This introduces the necessary code into InstCombine and InstSimplify. I've
added it into both because:

  1. InstCombine won't automatically pick up the associated logic in
     InstSimplify (InstCombine uses InstSimplify, but not via the API that
     passes in the original instruction).

  2. Putting the logic in InstCombine allows the resulting simplifications to become
     part of the iterative worklist

  3. Putting the logic in InstSimplify allows the resulting simplifications to be
     used by everywhere else that calls SimplifyInstruction (inlining, unrolling,
     and many others).

And this requires a small change to our definition of an ephemeral value so
that we don't break the rest case from r246696 (where the icmp feeding the
@llvm.assume, is also feeding a br). Under the old definition, the icmp would
not be considered ephemeral (because it is used by the br), but this causes the
assume to remove itself (in addition to simplifying the branch structure), and
it seems more-useful to prevent that from happening.

llvm-svn: 251146
2015-10-23 20:37:08 +00:00
Michael Liao
9a38e95740 [InstCombine] Revise the test case to match full sequene
llvm-svn: 250950
2015-10-21 21:50:58 +00:00