1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 13:33:37 +02:00
Commit Graph

196 Commits

Author SHA1 Message Date
Michael Kuperstein
bd4a813606 [LoopUnroll] Enable PGO-based loop peeling by default.
This enables peeling of loops with low dynamic iteration count by default,
when profile information is available.

Differential Revision: https://reviews.llvm.org/D27734

llvm-svn: 295796
2017-02-22 00:27:34 +00:00
Matt Arsenault
922b4ca45c AMDGPU: Don't unroll for private with dynamic allocas
This won't be elimnated, so this will just bloat code
if/when these are ever used/supported.

llvm-svn: 294030
2017-02-03 19:36:00 +00:00
Stanislav Mekhanoshin
d1c5641571 [AMDGPU] Unroll preferences improvements
Exit loop analysis early if suitable private access found.
Do not account for GEPs which are invariant to loop induction variable.
Do not account for Allocas which are too big to fit into register file anyway.
Add option for tuning: -amdgpu-unroll-threshold-private.

Differential Revision: https://reviews.llvm.org/D29473

llvm-svn: 293991
2017-02-03 02:20:05 +00:00
Chandler Carruth
774ae973b9 [PM] Simplify the new PM interface to the loop unroller and expose two
factory functions for the two modes the loop unroller is actually used
in in-tree: simplified full-unrolling and the entire thing including
partial unrolling.

I've also wired these up to nice names so you can express both of these
being in a pipeline easily. This is a precursor to actually enabling
these parts of the O2 pipeline.

Differential Revision: https://reviews.llvm.org/D28897

llvm-svn: 293136
2017-01-26 02:13:50 +00:00
Michael Kuperstein
ce7b578d43 [LoopUnroll] Properly update loopinfo for runtime unrolling by 2
Even when we don't create a remainder loop (that is, when we unroll by 2), we
may duplicate nested loops into the remainder. This is complicated by the fact
the remainder may itself be either inserted into an outer loop, or at the top
level. In the latter case, we may need to create new top-level loops.

Differential Revision: https://reviews.llvm.org/D29156

llvm-svn: 293124
2017-01-26 01:04:11 +00:00
Chandler Carruth
c3aa937b25 [PM] Teach LoopUnroll to update the LPM infrastructure as it unrolls
loops.

We do this by reconstructing the newly added loops after the unroll
completes to avoid threading pass manager details through all the mess
of the unrolling infrastructure.

I've enabled some extra assertions in the LPM to try and catch issues
here and enabled a bunch of unroller tests to try and make sure this is
sane.

Currently, I'm manually running loop-simplify when needed. That should
go away once it is folded into the LPM infrastructure.

Differential Revision: https://reviews.llvm.org/D28848

llvm-svn: 293011
2017-01-25 02:49:01 +00:00
Serge Pavlov
d59e310d20 Update domtree incrementally in loop peeling.
With this change dominator tree remains in sync after each step of loop
peeling.

Differential Revision: https://reviews.llvm.org/D29029

llvm-svn: 292895
2017-01-24 06:58:39 +00:00
Michael Kuperstein
147f6c96a5 [LoopUnroll] First form LCSSA, then loop-simplify
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.

This fixes PR31718.

Differential Revision: https://reviews.llvm.org/D29055

llvm-svn: 292854
2017-01-23 23:45:42 +00:00
Dehao Chen
03f571c246 Introduce -unroll-partial-threshold to separate PartialThreshold from Threshold in loop unorller.
Summary: Partial unrolling should have separate threshold with full unrolling.

Reviewers: efriedma, mzolotukhin

Reviewed By: efriedma, mzolotukhin

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D28831

llvm-svn: 292293
2017-01-17 23:39:33 +00:00
Michael Kuperstein
7da400e4db Add test that verifies we don't peel loops in optsize functions. NFC.
llvm-svn: 291708
2017-01-11 21:42:51 +00:00
Xin Tong
13105b6654 Make sure total loop body weight is preserved in loop peeling
Summary:
Regardless how the loop body weight is distributed, we should preserve
total loop body weight. i.e. we should have same weight reaching the body of the loop
or its duplicates in peeled and unpeeled case.

Reviewers: mkuper, davidxl, anemet

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D28179

llvm-svn: 290833
2017-01-02 20:27:23 +00:00
Dehao Chen
6e6c58680c Use continuous boosting factor for complete unroll.
Summary:
The current loop complete unroll algorithm checks if unrolling complete will reduce the runtime by a certain percentage. If yes, it will apply a fixed boosting factor to the threshold (by discounting cost). The problem for this approach is that the threshold abruptly. This patch makes the boosting factor a function of runtime reduction percentage, capped by a fixed threshold. In this way, the threshold changes continuously.

The patch also simplified the code by reducing one parameter in UP.

The patch only affects code-gen of two speccpu2006 benchmark:

445.gobmk binary size decreases 0.08%, no performance change.
464.h264ref binary size increases 0.24%, no performance change.

Reviewers: mzolotukhin, chandlerc

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D26989

llvm-svn: 290737
2016-12-30 00:50:28 +00:00
Michael Kuperstein
c222d94c24 [LoopUnroll] Implement profile-based loop peeling
This implements PGO-driven loop peeling.

The basic idea is that when the average dynamic trip-count of a loop is known,
based on PGO, to be low, we can expect a performance win by peeling off the
first several iterations of that loop.
Unlike unrolling based on a known trip count, or a trip count multiple, this
doesn't save us the conditional check and branch on each iteration. However,
it does allow us to simplify the straight-line code we get (constant-folding,
etc.). This is important given that we know that we will usually only hit this
code, and not the actual loop.

This is currently disabled by default.

Differential Revision: https://reviews.llvm.org/D25963

llvm-svn: 288274
2016-11-30 21:13:57 +00:00
Dehao Chen
63de4725df Use profile info to adjust loop unroll threshold.
Summary:
For flat loop, even if it is hot, it is not a good idea to unroll in runtime, thus we set a lower partial unroll threshold.
For hot loop, we set a higher unroll threshold and allows expensive tripcount computation to allow more aggressive unrolling.

Reviewers: davidxl, mzolotukhin

Subscribers: sanjoy, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D26527

llvm-svn: 287186
2016-11-17 01:17:02 +00:00
John Brawn
c944a4af03 [LoopUnroll] Keep the loop test only on the first iteration of max-or-zero loops
When we have a loop with a known upper bound on the number of iterations, and
furthermore know that either the number of iterations will be either exactly
that upper bound or zero, then we can fully unroll up to that upper bound
keeping only the first loop test to check for the zero iteration case.

Most of the work here is in plumbing this 'max-or-zero' information from the
part of scalar evolution where it's detected through to loop unrolling. I've
also gone for the safe default of 'false' everywhere but howManyLessThans which
could probably be improved.

Differential Revision: https://reviews.llvm.org/D25682

llvm-svn: 284818
2016-10-21 11:08:48 +00:00
Haicheng Wu
5b13afc1d2 Reapply "[LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop"
Reappy r284044 after revert in r284051. Krzysztof fixed the error in r284049.

The original summary:

This patch tries to fully unroll loops having break statement like this

for (int i = 0; i < 8; i++) {
    if (a[i] == value) {
        found = true;
        break;
    }
}

GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.

The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.

The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.

llvm-svn: 284053
2016-10-12 21:29:38 +00:00
Haicheng Wu
9079316128 Revert "[LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop"
This reverts commit r284044.

llvm-svn: 284051
2016-10-12 21:02:22 +00:00
Haicheng Wu
3e43a84017 [LoopUnroll] Use the upper bound of the loop trip count to fullly unroll a loop
This patch tries to fully unroll loops having break statement like this

for (int i = 0; i < 8; i++) {
    if (a[i] == value) {
        found = true;
        break;
    }
}

GCC can fully unroll such loops, but currently LLVM cannot because LLVM only
supports loops having exact constant trip counts.

The upper bound of the trip count can be obtained from calling
ScalarEvolution::getMaxBackedgeTakenCount(). Part of the patch is the
refactoring work in SCEV to prevent duplicating code.

The feature of using the upper bound is enabled under the same circumstance
when runtime unrolling is enabled since both are used to unroll loops without
knowing the exact constant trip count.

Differential Revision: https://reviews.llvm.org/D24790

llvm-svn: 284044
2016-10-12 20:24:32 +00:00
Dehao Chen
9a6d19a0c6 Revert test change in r282894 as it's broken in some platforms.
llvm-svn: 282903
2016-09-30 19:25:23 +00:00
Dehao Chen
766ad13bec Update loop unroller cost model to make sure debug info does not affect optimization decisions.
Summary: Debug info should *not* affect optimization decisions. This patch updates loop unroller cost model to make it not affected by debug info.

Reviewers: davidxl, mzolotukhin

Subscribers: haicheng, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D25098

llvm-svn: 282894
2016-09-30 18:30:04 +00:00
Michael Zolotukhin
38f796095c [LoopSimplify] When simplifying phis in loop-simplify, do it only if it preserves LCSSA form.
llvm-svn: 282541
2016-09-27 21:03:45 +00:00
Michael Zolotukhin
00ccad14c6 Revert "[LoopUnroll] Properly update loop-info when cloning prologues and epilogues."
This reverts commit r280901.

This caused a bunch of failures, reverting it until I investigate them.

llvm-svn: 280905
2016-09-08 03:51:30 +00:00
Michael Zolotukhin
109c858375 [LoopUnroll] Properly update loop-info when cloning prologues and epilogues.
Summary:
When cloning blocks for prologue/epilogue we need to replicate the loop
structure from the original loop. It wasn't a problem for the innermost
loops, but it led to an incorrect loop info when we unrolled a loop with
a child loop - in this case created prologue-loop had a child loop, but
loop info didn't reflect that.

This fixes PR28888.

Reviewers: chandlerc, sanjoy, hfinkel

Subscribers: llvm-commits, silvas

Differential Revision: https://reviews.llvm.org/D24203

llvm-svn: 280901
2016-09-08 01:52:26 +00:00
Michael Zolotukhin
d9b369bc29 [LoopUnroll] Fix a PowerPC test broken by r277524.
llvm-svn: 277527
2016-08-02 21:43:25 +00:00
Michael Zolotukhin
878379ae72 [LoopUnroll] Switch the default value of -unroll-runtime-epilog back to its original value.
As agreed in post-commit review of r265388, I'm switching the flag to
its original value until the 90% runtime performance regression on
SingleSource/Benchmarks/Stanford/Bubblesort is addressed.

llvm-svn: 277524
2016-08-02 21:24:14 +00:00
Michael Zolotukhin
7bf05c9357 [LoopUnroll] Ensure we create prolog loops in simplified form.
llvm-svn: 277502
2016-08-02 19:19:31 +00:00
Adam Nemet
3b9497477f [LoopUnroll] Include hotness of region in opt remark
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.

The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.

This is how the patch affects the O3 pipeline:

         Dominator Tree Construction
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Rotate Loops
           Loop Invariant Code Motion
           Unswitch loops
         Simplify the CFG
         Dominator Tree Construction
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Combine redundant instructions
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Induction Variable Simplification
           Recognize loop idioms
           Delete dead loops
           Unroll loops
...

llvm-svn: 277203
2016-07-29 19:29:47 +00:00
Sean Silva
8c1e18650c [PM] Port LoopUnroll.
We just set PreserveLCSSA to always true since we don't have an
analogous method `mustPreserveAnalysisID(LCSSA)`.

Also port LoopInfo verifier pass to test LoopUnrollPass.

llvm-svn: 276063
2016-07-19 23:54:23 +00:00
Michael Zolotukhin
5d958fd6b6 [LoopUnrollAnalyzer] Fix a bug in UnrolledInstAnalyzer::visitLoad.
When simplifying a load we need to make sure that the type of the
simplified value matches the type of the instruction we're processing.
In theory, we can handle casts here as we deal with constant data, but
since it's not implemented at the moment, we at least need to bail out.

This fixes PR28262.

llvm-svn: 273562
2016-06-23 14:31:31 +00:00
Sanjoy Das
8576aee95c [SCEV] Fix incorrect trip count computation
The way we elide max expressions when computing trip counts is incorrect
-- it breaks cases like this:

```
static int wrapping_add(int a, int b) {
  return (int)((unsigned)a + (unsigned)b);
}

void test() {
  volatile int end_buf = 2147483548; // INT_MIN - 100
  int end = end_buf;

  unsigned counter = 0;
  for (int start = wrapping_add(end,  200); start < end; start++)
    counter++;

  print(counter);
}
```

Note: the `NoWrap` variable that was being tested has little to do with
the values flowing into the max expression; it is a property of the
induction variable.

test/Transforms/LoopUnroll/nsw-tripcount.ll was added to solely test
functionality I'm reverting in this change, so I've deleted the test
fully.

llvm-svn: 273079
2016-06-18 04:38:31 +00:00
David Majnemer
0d169a02ae [LoopUnroll] Don't crash trying to unroll loop with EH pad exit
We do not support splitting cleanuppad or catchswitches.  This is
problematic for passes which assume that a loop is in loop simplify
form (the loop would have a dedicated exit block instead of sharing it).

While it isn't great that we don't support this for cleanups, we still
cannot make loop-simplify form an assertable precondition because
indirectbr will also disable these sorts of CFG cleanups.

This fixes PR28132.

llvm-svn: 272739
2016-06-15 00:19:56 +00:00
Evgeny Stupachenko
2089dfdfc5 The patch set unroll disable pragma when unroll
with user specified count has been applied.

Summary:
Previously SetLoopAlreadyUnrolled() set the disable pragma only if
there was some loop metadata.
Now it set the pragma in all cases. This helps to prevent multiple
unroll when -unroll-count=N is given.

Reviewers: mzolotukhin

Differential Revision: http://reviews.llvm.org/D20765

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 272195
2016-06-08 20:21:24 +00:00
Michael Zolotukhin
2b6b11a19d [LoopUnrollAnalyzer] Fix a crash in analyzeLoopUnrollCost.
In some cases, when simplifying with SCEV, we might consider pointer values as
just usual integer values.  Thus, we might get a different type from what we
had originally in the map of simplified values, and hence we need to check
types before operating on the values.

This fixes PR28015.

llvm-svn: 271931
2016-06-06 19:21:40 +00:00
Evgeny Stupachenko
8323ef30a7 The patch refactors unroll pass.
Summary:
Unroll factor (Count) calculations moved to a new function.
Early exits on pragma and "-unroll-count" defined factor added.
New type of unrolling "Force" introduced (previously used implicitly).
New unroll preference "AllowRemainder" introduced and set "true" by default.
(should be set to false for architectures that suffers from it).

Reviewers: hfinkel, mzolotukhin, zzheng

Differential Revision: http://reviews.llvm.org/D19553

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 271071
2016-05-27 23:15:06 +00:00
Michael Zolotukhin
1c074e07a1 [LoopUnrollAnalyzer] Bail out instead of dying with assert when facing huge index.
This fixes PR27902.

llvm-svn: 270946
2016-05-27 00:55:16 +00:00
Michael Zolotukhin
99ecc2d594 [LoopUnrollAnalyzer] Fix a crash in analyzeLoopUnrollCost.
Condition might be simplified to a Constant, but it doesn't have to be
ConstantInt, so we should dyn_cast, instead of cast.

This fixes PR27886.

llvm-svn: 270924
2016-05-26 21:42:51 +00:00
Michael Zolotukhin
82048571c5 Re-enable "[LoopUnroll] Enable advanced unrolling analysis by default" one more time.
This reverts commit r270577.

llvm-svn: 270630
2016-05-24 23:00:05 +00:00
Michael Zolotukhin
7bf254c21f [LoopUnrollAnalyzer] Fix a crash in UnrolledInstAnalyzer::visitCastInst.
This fixes PR27847. Now for real.

llvm-svn: 270629
2016-05-24 22:59:58 +00:00
Hans Wennborg
1bb7a310ec Revert r270518, which re-enabled "[LoopUnroll] Enable advanced unrolling analysis by default.
Chromium builds are still hitting the assert in PR27874.

llvm-svn: 270577
2016-05-24 16:10:12 +00:00
Michael Zolotukhin
5d004fcebe Revert "Revert r270478 "[LoopUnroll] Enable advanced unrolling analysis by default.""
This reverts commit r270512 and reapplies r270478. Originally it caused
PR27847, but it was fixed in r270517.

llvm-svn: 270518
2016-05-24 01:22:20 +00:00
Michael Zolotukhin
32f621fe89 [LoopUnrollAnalyzer] Fix a crash in UnrolledInstAnalyzer::visitCastInst.
This fixes PR27847.

llvm-svn: 270517
2016-05-24 00:51:01 +00:00
Hans Wennborg
794d1b3f11 Revert r270478 "[LoopUnroll] Enable advanced unrolling analysis by default."
This caused PR27847.

llvm-svn: 270512
2016-05-23 23:42:35 +00:00
Michael Zolotukhin
aaf9408cae [LoopUnroll] Enable advanced unrolling analysis by default.
Summary:
This patch turns on LoopUnrollAnalyzer by default. To mitigate compile
time regressions, I chose very conservative thresholds for now. Later we
can make them more aggressive, but it might require being smarter in
which loops we're optimizing. E.g. currently the biggest issue is that
with more agressive thresholds we unroll many cold loops, which
increases compile time for no performance benefit (performance of those
loops is improved, but it doesn't matter since they are cold).

Test results for compile time(using 4 samples to reduce noise):
```
MultiSource/Benchmarks/VersaBench/ecbdes/ecbdes 5.19%
SingleSource/Benchmarks/Polybench/medley/reg_detect/reg_detect  4.19%
MultiSource/Benchmarks/FreeBench/fourinarow/fourinarow  3.39%
MultiSource/Applications/JM/lencod/lencod 1.47%
MultiSource/Benchmarks/Fhourstones-3_1/fhourstones3_1 -6.06%
```

I didn't see any performance changes in the testsuite, but it improves
some internal tests.

Reviewers: hfinkel, chandlerc

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D20482

llvm-svn: 270478
2016-05-23 19:10:19 +00:00
Michael Zolotukhin
60d4945387 [LoopUnrollAnalyzer] Take into account cost of instructions controlling branches, along with their operands.
Previously, we didn't add their and their operands cost, which could've
resulted in unrolling loops for no actual benefit.

llvm-svn: 269985
2016-05-18 21:20:12 +00:00
Michael Zolotukhin
e7c1345927 Revert "Revert "[Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the...""
This reverts commit r269395.

Try to reapply with a fix from chapuni.

llvm-svn: 269486
2016-05-13 21:23:25 +00:00
Michael Zolotukhin
5226965218 Revert "[Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the..."
This reverts commit r269388.

It caused some bots to fail, I'm reverting it until I investigate the
issue.

llvm-svn: 269395
2016-05-13 06:32:25 +00:00
Michael Zolotukhin
afd08c7313 [Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the...
Summary:
...loop after the last iteration.

This is really hard to do correctly. The core problem is that we need to
model liveness through the induction PHIs from iteration to iteration in
order to get the correct results, and we need to correctly de-duplicate
the common subgraphs of instructions feeding some subset of the
induction PHIs. All of this can be driven either from a side effect at
some iteration or from the loop values used after the loop finishes.

This patch implements this by storing the forward-propagating analysis
of each instruction in a cache to recall whether it was free and whether
it has become live and thus counted toward the total unroll cost. Then,
at each sink for a value in the loop, we recursively walk back through
every value that feeds the sink, including looping back through the
iterations as needed, until we have marked the entire input graph as
live. Because we cache this, we never visit instructions more than twice
-- once when we analyze them and put them into the cache, and once when
we count their cost towards the unrolled loop. Also, because the cache
is only two bits and because we are dealing with relatively small
iteration counts, we can store all of this very densely in memory to
avoid this from becoming an excessively slow analysis.

The code here is still pretty gross. I would appreciate suggestions
about better ways to factor or split this up, I've stared too long at
the algorithmic side to really have a good sense of what the design
should probably look at.

Also, it might seem like we should do all of this bottom-up, but I think
that is a red herring. Specifically, the simplification power is *much*
greater working top-down. We can forward propagate very effectively,
even across strange and interesting recurrances around the backedge.
Because we use data to propagate, this doesn't cause a state space
explosion. Doing this level of constant folding, etc, would be very
expensive to do bottom-up because it wouldn't be until the last moment
that you could collapse everything. The current solution is essentially
a top-down simplification with a bottom-up cost accounting which seems
to get the best of both worlds. It makes the simplification incremental
and powerful while leaving everything dead until we *know* it is needed.

Finally, a core property of this approach is its *monotonicity*. At all
times, the current UnrolledCost is a conservatively low estimate. This
ensures that we will never early-exit from the analysis due to exceeding
a threshold when if we had continued, the cost would have gone back
below the threshold. These kinds of bugs can cause incredibly hard to
track down random changes to behavior.

We could use a techinque similar (but much simpler) within the inliner
as well to avoid considering speculated code in the inline cost.

Reviewers: chandlerc

Subscribers: sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D11758

llvm-svn: 269388
2016-05-13 01:42:39 +00:00
Michael Zolotukhin
c6573bbc1b [LoopUnrollAnalyzer] Don't treat gep-instructions with simplified offset as simplified.
Summary:
Currently we consider such instructions as simplified, which is incorrect,
because if their user isn't simplified, we can't actually simplify them too.
This biases our estimates of profitability: for instance the analyzer expects
much more gains from unrolling memcpy loops than there actually are.

Reviewers: hfinkel, chandlerc

Subscribers: mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D17365

llvm-svn: 269387
2016-05-13 01:42:34 +00:00
Hans Wennborg
0d10a020ff Loop unroller: set thresholds for optsize and minsize functions to zero
Before r268509, Clang would disable the loop unroll pass when optimizing
for size. That commit enabled it to be able to support unroll pragmas
in -Os builds. However, this regressed binary size in one of Chromium's
DLLs with ~100 KB.

This restores the original behaviour of no unrolling at -Os, but doing it
in LLVM instead of Clang makes more sense, and also allows the pragmas to
keep working.

Differential revision: http://reviews.llvm.org/D20115

llvm-svn: 269124
2016-05-10 21:45:55 +00:00
Marianne Mailhot-Sarrasin
59f145598e Adding test cases showing the behavior of LoopUnrollPass according to optnone and optsize attributes
The unroll pass was disabled by clang in /Os. Those new test cases shows that the pass will behave correctly even if it is not fully disabled. This patch is related in some way to the clang commit (http://reviews.llvm.org/D19827), which re-enables the pass in /Os.

Differential Revision: http://reviews.llvm.org/D19870

llvm-svn: 268524
2016-05-04 17:45:40 +00:00