It appears for Swift there was confusing errors when trying to parse APINotes, when libAPINotes and libInterfaceStub are linked, they both export symbol
`__ZN4llvm4yaml7yamlizeINS_12VersionTupleEEENSt3__19enable_ifIXsr16has_ScalarTraitsIT_EE5valueEvE4typeERNS0_2IOERS5_bRNS0_12EmptyContextE`, and discovered
same symbol defined within llvm-ifs.
This consolidates the boilerplate into YAMLTraits and defers the specific validation in reading the whole input.
fixes: rdar://problem/70450563
Reviewed By: phosek, dblaikie
Differential Revision: https://reviews.llvm.org/D89764
When generating the use-list order, also consider value uses that are
operands which are wrapped in metadata; e.g. llvm.dbg.value operands.
This fixes PR36778. The test case is based on the reproducer from that
report.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D53758
Create the LLVM / CodeView register mappings for the 32-bit ARM Window targets.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D89622
For testing purposes I need a way to build and install FileCheck and
yaml2obj. I had to choose between making FileCheck an LLVM tool and
making obj2yaml and yaml2obj utilities. I think the distinction is
rather arbitrary but my understanding is that tools are things meant for
the toolchain while utilities are more used for things like testing,
which is the case here.
The functional difference is that these tools now end up in the
${LLVM_UTILS_INSTALL_DIR}, which defaults to the ${LLVM_TOOLS_INSTALL_DIR}.
Unless you specified a different value or you added obj2yaml and
yaml2obj to ${LLVM_TOOLCHAIN_TOOLS}, this patch shouldn't change
anything.
Differential revision: https://reviews.llvm.org/D89357
The current situation/behavior is:
1) llvm-readelf doesn't need a string that is specified by `DT_SONAME`.
2) llvm-readobj/elf always tries to read it, even when there is no `DT_SONAME` tag.
3) Because of that both tools reports a warning for many our test cases.
This patch delays getting a SOName string and changes the behavior (llvm-readobj) to
only report a warning when there is a `DT_SONAME` and a string cab't be read.
Warning is not reported for llvm-readelf, as it never tries to dump it.
Differential revision: https://reviews.llvm.org/D89384
This patch moves definition generation out from the session lock, instead
running it under a per-dylib generator lock. It also makes the
DefinitionGenerator::tryToGenerate method optionally asynchronous: Generators
are handed an opaque LookupState object which can be captured to stop/restart
the lookup process.
The new scheme provides the following benefits and guarantees:
(1) Queries that do not need to attempt definition generation (because all
requested symbols matched against existing definitions in the JITDylib)
can proceed without being blocked by any running definition generators.
(2) Definition generators can capture the LookupState to continue their work
asynchronously. This allows generators to run for an arbitrary amount of
time without blocking a thread. Definition generators that do not need to
run asynchronously can return without capturing the LookupState to eliminate
unnecessary recursion and improve lookup performance.
(3) Definition generators still do not need to worry about concurrency or
re-entrance: Since they are still run under a (per-dylib) lock, generators
will never be re-entered concurrently, or given overlapping symbol sets to
generate.
Finally, the new system distinguishes between symbols that are candidates for
generation (generation candidates) and symbols that failed to match for a query
(due to symbol visibility). This fixes a bug where an unresolved symbol could
trigger generation of a duplicate definition for an existing hidden symbol.
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.
Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.
Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.
The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
This removes all legacy layers, legacy utilities, the old Orc C bindings,
OrcMCJITReplacement, and OrcMCJITReplacement regression tests.
ExecutionEngine and MCJIT are not affected by this change.
Format specifiers of incorrect length are replaced with format specifier
macros from `<cinttypes>` matching the typedefs used to declare the type
of the value being printed.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89637
Before formating ARM64_RELOC_ADDEND relocation target name as a hex
number, the architecture need to be checked since other architectures
can define a different relocation type with the same integer as
ARM64_RELOC_ADDEND.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89094
The prefix given to --prefix will be added to GNU absolute paths when
used with --source option (source interleaved with the disassembly).
This matches GNU's objdump behavior.
GNU and C++17 rules for absolute paths are different.
Differential Revision: https://reviews.llvm.org/D85024
Fixes PR46368.
Differential Revision: https://reviews.llvm.org/D85024
These don't really have function bodies to try to eliminate. This also
has a good chance of just producing invalid IR since intrinsics can
have special operand constraints (e.g. metadata arguments aren't valid
for an arbitrary call). This was wasting quite a bit of time producing
and failing on invalid IR when replacing dbg.values with undefs.
This reverts commit c2bd20ef652 and the follow up fix 16605bba6fb.
The tools/llvm-cov/warnings.h continues to fail on Windows platforms even
after the follow up, for example on the llvm-clang-win-x-armv7l builder:
http://lab.llvm.org:8011/#/builders/60/builds/94
When all provided source files are filtered out either due to `--ignore-filename-regex` or not part of binary, don't generate coverage reults for all source files. Because if users want to generate coverage results for all source files, they don't even need to provid selected source files or `--ignore-filename-regex`.
Differential Revision: https://reviews.llvm.org/D89359
Many sections either do not have a support of `Size`/`Content` or support just a
one of them, e.g only `Content`.
`Section` is the base class for sections. This patch adds `Content` and `Size` members
to it and removes similar members from derived classes. This allows to cleanup and
generalize the code and adds a support of these keys for all sections (`SHT_MIPS_ABIFLAGS`
is a only exception, it requires unrelated specific changes to be done).
I had to update/add many tests to test the new functionality properly.
Differential revision: https://reviews.llvm.org/D89039
(this doesn't cover all cases - libDebugInfoDWARF has a default error
handler that prints errors without any exit code handling - I'll be
following up with a patch for that after this)
dsymutil was incorrectly ignoring aliases to private extern symbols in
the MachODebugMapParser. This resulted in spurious warnings about not
being able to find symbols.
rdar://49652389
Differential revision: https://reviews.llvm.org/D89444
Summary:
This patch does the following:
1. Make InitTargetOptionsFromCodeGenFlags() accepts Triple as a
parameter, because some options' default value is triple dependant.
2. DataSections is turned on by default on AIX for llc.
3. Test cases change accordingly because of the default behaviour change.
4. Clang Driver passes in -fdata-sections by default on AIX.
Reviewed By: MaskRay, DiggerLin
Differential Revision: https://reviews.llvm.org/D88737
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
Adds more testing in basic-assembly.s and a new test tables.s.
Adds support to yaml reading and writing of tables as well.
Differential Revision: https://reviews.llvm.org/D88815
This diff is similar to what D71394 did for `llvm-objdump` -- it avoids
trying to look up a section name for STABS symbols, since some STABS
symbol types (like `N_OSO`) use the `n_sect` field to store other data
instead of a section index.
Differential Revision: https://reviews.llvm.org/D88468
If the metadata is valid yaml, we can print it, even if it failed
validation. That makes it easier to debug any wrong metadata.
Differential Revision: https://reviews.llvm.org/D89243
Specification for `SHT_HASH` table says (https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html#hash)
that it contains `Elf32_Word` entries for both `32/64` bit objects.
But there is a problem with `EM_S390` and `ELF::EM_ALPHA` platforms: they use 8-bytes entries.
(see the issue reported: https://bugs.llvm.org/show_bug.cgi?id=47681).
Currently we might infer the size of the dynamic symbols table from hash table,
but because of the issue mentioned, the calculation is wrong. And also we don't dump the hash table
properly.
I am not sure if we want to support 8-bytes entries as they violates specification and also the
`.hash` table is kind of deprecated by itself (the `.gnu.hash` table is used nowadays).
So, the solution this patch suggests is to ban using of the hash table on `EM_S390/EM_ALPHA` platforms.
Differential revision: https://reviews.llvm.org/D88817
At AMD, in an internal audit of our code, we found some corner cases
where we were not quite differentiating targets enough for some old
hardware. This commit is part of fixing that by adding three new
targets:
* The "Oland" and "Hainan" variants of gfx601 are now split out into
gfx602. LLPC (in the GPUOpen driver) and other front-ends could use
that to avoid using the shaderZExport workaround on gfx602.
* One variant of gfx703 is now split out into gfx705. LLPC and other
front-ends could use that to avoid using the
shaderSpiCsRegAllocFragmentation workaround on gfx705.
* The "TongaPro" variant of gfx802 is now split out into gfx805.
TongaPro has a faster 64-bit shift than its former friends in gfx802,
and a subtarget feature could be set up for that to take advantage of
it. This commit does not make that change; it just adds the target.
V2: Add clang changes. Put TargetParser list in order.
V3: AMDGCNGPUs table in TargetParser.cpp needs to be in GPUKind order,
so fix the GPUKind order.
Differential Revision: https://reviews.llvm.org/D88916
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
This patch makes the opcode_base and the standard_opcode_lengths fields
of the line table optional. When both of them are not specified,
yaml2obj emits them according to the line table's version.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D88355
It fixes possible scenarios when we crash/assert with `--hash-symbols` when
dumping an invalid GNU hash table which has a broken value in the buckets array.
This fixes a crash reported in comments for
https://bugs.llvm.org/show_bug.cgi?id=47681
Differential revision: https://reviews.llvm.org/D88561
This removes "VerifyEachPass" parameters from a lot of functions which is nice.
Don't verify after special passes or VerifierPass.
This introduces verification on loop and cgscc passes, verifying the corresponding function/module.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D88764
The `Group` class represents a group section and it is
named inconsistently with other sections which all has
the "Section" suffix. It is sometimes confusing,
this patch addresses the issue.
Differential revision: https://reviews.llvm.org/D88892
We have `--addrsig` implemented for `llvm-readobj`.
Usually it is convenient to use a single tool for dumping,
so it seems we might want to implement `--addrsig` for `llvm-readelf` too.
I've selected a simple output format which is a bit similar to one,
used for dumping of the symbol table. It looks like:
```
Address-significant symbols section '.llvm_addrsig' contains 2 entries:
Num: Name
1: foo
2: bar
```
Differential revision: https://reviews.llvm.org/D88835
This diff adds support for universal binaries to llvm-objcopy.
This is a recommit of 32c8435ef70031 with the asan issue fixed.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D88400
This reverts commit 6e25586990b93e2c9eaaa4f473b6720ccd646c46. It depends
on 32c8435ef70031d7bd3dce48e41bdce65747e123, which I'm reverting due to
ASan failures. Details in https://reviews.llvm.org/D88400.
Rename the DwarfFile class in DWARFLinker to DWARFFile. This is
consistent with the other DWARF classes and avoids a ODR violation with
the DwarfFile class in AsmPrinter.
Remove usages of special error reporting functions(error(),
reportError()). Errors are reported as Expected<>/Error returning
values. This part is for ELF subfolder of llvm-objcopy.
Testing: check-all.
Differential Revision: https://reviews.llvm.org/D87987