Extracting the low element of a vector is now done with EXTRACT_SUBREG,
and the zero-extension performed by load movss is now modeled with
SUBREG_TO_REG, and so on.
Register-to-register movss and movsd are no longer considered copies;
they are two-address instructions which insert a scalar into a vector.
llvm-svn: 97354
but codegen'd differently. This really wanted to use some
sort of subreg to get the low 4 bytes of the G8RC register
or something. However, it's invalid and nothing is testing
it, so I'm just zapping the bogosity.
llvm-svn: 97345
o Parallel addition and subtraction, signed/unsigned
o Miscellaneous operations: QADD, QDADD, QSUB, QDSUB
o Unsigned sum of absolute differences [and accumulate]: USAD8, USADA8
o Signed/Unsigned saturate: SSAT, SSAT16, USAT, USAT16
o Signed multiply accumulate long (halfwords): SMLAL<x><y>
o Signed multiply accumulate/subtract [long] (dual): SMLAD[x], SMLALD[X], SMLSD[X], SMLSLD[X]
o Signed dual multiply add/subtract [long]: SMUAD[X], SMUSD[X]
llvm-svn: 97276
This is possible because F8RC is a subclass of F4RC. We keep FMRSD around so
fextend has a pattern.
Also allow folding of memory operands on FMRSD.
llvm-svn: 97275
The PowerPC floating point registers can represent both f32 and f64 via the
two register classes F4RC and F8RC. F8RC is considered a subclass of F4RC to
allow cross-class coalescing. This coalescing only affects whether registers
are spilled as f32 or f64.
Spill slots must be accessed with load/store instructions corresponding to the
class of the spilled register. PPCInstrInfo::foldMemoryOperandImpl was looking
at the instruction opcode which is wrong.
X86 has similar floating point register classes, but doesn't try to fold
memory operands, so there is no problem there.
llvm-svn: 97262
object construction. There is no provision to change them when the
code for a function generated.
So we have to change these names while printing assembly.
llvm-svn: 97213
terms of store and load, which means bitcasting between scalar
integer and vector has endian-specific results, which undermines
this whole approach.
llvm-svn: 97137
(511*16) bytes register displacement (D-form).
NOTE: This is a potential headache, given the SPU's local core limitations,
allowing the software developer to commit stack overrun suicide unknowingly.
Also, large SPU stack frames will cause code size explosion. But, one presumes
that the software developer knows what they're doing...
Contributed by Kalle.Raiskila@nokia.com, edited slightly before commit.
llvm-svn: 97091
- Function uses all scratch registers AND
- Function does not use any callee saved registers AND
- Stack size is too big to address with immediate offsets.
In this case a register must be scavenged to calculate the address of a stack
object, and the scavenger needs a spare register or emergency spill slot.
llvm-svn: 97071
greater-than-or-equal SELECT_CCs to NEON vmin/vmax instructions. This is
only allowed when UnsafeFPMath is set or when at least one of the operands
is known to be nonzero.
llvm-svn: 97065
the number of value bits, not the number of bits of allocation for in-memory
storage.
Make getTypeStoreSize and getTypeAllocSize work consistently for arrays and
vectors.
Fix several places in CodeGen which compute offsets into in-memory vectors
to use TargetData information.
This fixes PR1784.
llvm-svn: 97064
Adding the function "lookupGCCName" to the MBlazeIntrinsicInfo
class to support the Clang MicroBlaze target.
Additionally, minor fixes which remove some unused PIC code
(PIC is not supported yet in the MicroBlaze backend) and
removed some unused variables.
llvm-svn: 97054
necessary to swap the operands to handle NaN and negative zero properly.
Also, reintroduce logic for checking for NaN conditions when forming
SSE min and max instructions, fixed to take into consideration NaNs and
negative zeros. This allows forming min and max instructions in more
cases.
llvm-svn: 97025
memory from three or four registers and VST2 (multiple two-element structures)
which stores to memory from two double-spaced registers.
A8.6.391 & A8.6.393
llvm-svn: 97018
three or four registers and VLD2 (multiple two-element structures) which loads
memory into two double-spaced registers.
A8.6.307 & A8.6.310
llvm-svn: 96980
The MicroBlaze is a highly configurable 32-bit soft-microprocessor for
use on Xilinx FPGAs. For more information see:
http://www.xilinx.com/tools/microblaze.htmhttp://en.wikipedia.org/wiki/MicroBlaze
The current LLVM MicroBlaze backend generates assembly which can be
compiled using the an appropriate binutils assembler.
llvm-svn: 96969