realignment should be forced.
With this commit, we can now force stack realignment when doing LTO and
do so on a per-function basis. Also, add a new cl::opt option
"stackrealign" to CommandFlags.h which is used to force stack
realignment via llc's command line.
Out-of-tree projects currently using -force-align-stack to force stack
realignment should make changes to attach the attribute to the functions
in the IR.
Differential Revision: http://reviews.llvm.org/D11814
llvm-svn: 247450
We used different conditions to determine if we should emit startproc vs
endproc. Use the same condition to ensure that they will always be
paired.
This fixes PR24374.
llvm-svn: 247435
The rest of the EH pads are fine, since they have at most one label and
take fewer operands for the personality.
Old catchpad vs. new:
%5 = catchpad [i8* bitcast (i32 ()* @"\01?filt$0@0@main@@" to i8*)] to label %__except.ret.10 unwind label %catchendblock.9
-----
%5 = catchpad [i8* bitcast (i32 ()* @"\01?filt$0@0@main@@" to i8*)]
to label %__except.ret.10 unwind label %catchendblock.9
llvm-svn: 247433
The Win32 EH runtime caller does not preserve EBP, even though it does
preserve the CSRs (EBX, ESI, EDI) for us. The result was that each
finally funclet call would leave the frame pointer off by 12 bytes.
llvm-svn: 247348
The (mostly-deprecated) SelectionDAG-based ILPListDAGScheduler scheduler
was making poor scheduling decisions, causing high register pressure and
extraneous register spills.
Switching to the newer machine scheduler generates better code -- even
without there being a machine model defined for SPARC yet.
(Actually committing the test changes too, this time, unlike r247315)
llvm-svn: 247343
Summary:
The coloring code in WinEHPrepare queues cleanuprets' successors with the
correct color (the parent one) when it sees their cleanuppad, and so later
when iterating successors knows to skip processing cleanuprets since
they've already been queued. This latter check was incorrectly under an
'else' condition and so inadvertently was not kicking in for single-block
cleanups. This change sinks the check out of the 'else' to fix the bug.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12751
llvm-svn: 247299
order.
The implicit register verifier in the MIR parser should only check if the
instruction's default implicit operands are present in the instruction. It
should not check the order in which they occur.
llvm-svn: 247283
Summary:
The BUILD_VECTOR node will truncate its operators to match the
type. We need to take this into account when constant folding -
we need to perform a truncation before constant folding the elements.
This is because the upper bits can change the result, depending on
the operation type (for example this is the case for min/max).
This change also adds a regression test.
Reviewers: jmolloy
Subscribers: jmolloy, llvm-commits
Differential Revision: http://reviews.llvm.org/D12697
llvm-svn: 247265
The tests in isVTRNMask and isVTRN_v_undef_Mask should also check that the elements of the upper and lower half of the vectorshuffle occur in the correct order when both halves are used. Without this test the code assumes that it is correct to use vector transpose (vtrn) for the masks <1, 1, 0, 0> and <1, 3, 0, 2>, among others, but the transpose actually incorrectly generates shuffles for <0, 0, 1, 1> and <0, 2, 1, 3> in this case.
Patch by Jeroen Ketema!
llvm-svn: 247254
The changes in this patch are as follows:
1. Modify the emitPrologue and emitEpilogue methods to work properly when the prologue and epilogue blocks are not the first/last blocks in the function
2. Fix a bug in PPCEarlyReturn optimization caused by an empty entry block in the function
3. Override the runShrinkWrap PredicateFtor (defined in TargetMachine) to check whether shrink wrapping should run:
Shrink wrapping will run on PPC64 (Little Endian and Big Endian) unless -enable-shrink-wrap=false is specified on command line
A new test case, ppc-shrink-wrapping.ll was created based on the existing shrink wrapping tests for x86, arm, and arm64.
Phabricator review: http://reviews.llvm.org/D11817
llvm-svn: 247237
First, we need to teach isFrameOffsetLegal about STNP.
It already knew about the STP/LDP variants, but those were probably
never exercised, because it's only the load/store optimizer that
generates STP/LDP, and the only user of the method is frame lowering,
which runs earlier.
The STP/LDP cases were wrong: they didn't take into account the fact
that they return two results, not one, so the immediate offset will be
the 4th operand, not the 3rd.
Follow-up to r247234.
llvm-svn: 247236
We could go through the load/store optimizer and match STNP where
we would have matched a nontemporal-annotated STP, but that's not
reliable enough, as an opportunistic optimization.
Insetad, we can guarantee emitting STNP, by matching them at ISel.
Since there are no single-input nontemporal stores, we have to
resort to some high-bits-extracting trickery to generate an STNP
from a plain store.
Also, we need to support another, LDP/STP-specific addressing mode,
base + signed scaled 7-bit immediate offset.
For now, only match the base. Let's make it smart separately.
Part of PR24086.
llvm-svn: 247231
All of the complexity is in cleanupret, and it mostly follows the same
codepaths as catchret, except it doesn't take a return value in RAX.
This small example now compiles and executes successfully on win32:
extern "C" int printf(const char *, ...) noexcept;
struct Dtor {
~Dtor() { printf("~Dtor\n"); }
};
void has_cleanup() {
Dtor o;
throw 42;
}
int main() {
try {
has_cleanup();
} catch (int) {
printf("caught it\n");
}
}
Don't try to put the cleanup in the same function as the catch, or Bad
Things will happen.
llvm-svn: 247219
The 32-bit tables don't actually contain PC range data, so emitting them
is incredibly simple.
The 64-bit tables, on the other hand, use the same table for state
numbering as well as label ranges. This makes things more difficult, so
it will be implemented later.
llvm-svn: 247192
Summary:
This helps mostly when we use add instructions for address calculations
that contain immediates.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D12256
llvm-svn: 247157
Summary:
One of the vector splitting paths for extract_vector_elt tries to lower:
define i1 @via_stack_bug(i8 signext %idx) {
%1 = extractelement <2 x i1> <i1 false, i1 true>, i8 %idx
ret i1 %1
}
to:
define i1 @via_stack_bug(i8 signext %idx) {
%base = alloca <2 x i1>
store <2 x i1> <i1 false, i1 true>, <2 x i1>* %base
%2 = getelementptr <2 x i1>, <2 x i1>* %base, i32 %idx
%3 = load i1, i1* %2
ret i1 %3
}
However, the elements of <2 x i1> are not byte-addressible. The result of this
is that the getelementptr expands to '%base + %idx * (1 / 8)' which simplifies
to '%base + %idx * 0', and then simply '%base' causing all values of %idx to
extract element zero.
This commit fixes this by promoting the vector elements of <8-bits to i8 before
splitting the vector.
This fixes a number of test failures in pocl.
Reviewers: pekka.jaaskelainen
Subscribers: pekka.jaaskelainen, llvm-commits
Differential Revision: http://reviews.llvm.org/D12591
llvm-svn: 247128
Currently this hits an assert that extload should
always be supported, which assumes integer extloads.
This moves a hack out of SI's argument lowering and
is covered by existing tests.
llvm-svn: 247113
Typically these are catchpads, which hold data used to decide whether to
catch the exception or continue unwinding. We also shouldn't create MBBs
for catchendpads, cleanupendpads, or terminatepads, since no real code
can live in them.
This fixes a problem where MI passes (like the register allocator) would
try to put code into catchpad blocks, which are not executed by the
runtime. In the new world, blocks ending in invokes now have many
possible successors.
llvm-svn: 247102
Summary:
32-bit funclets have short prologues that allocate enough stack for the
largest call in the whole function. The runtime saves CSRs for the
funclet. It doesn't restore CSRs after we finally transfer control back
to the parent funciton via a CATCHRET, but that's a separate issue.
32-bit funclets also have to adjust the incoming EBP value, which is
what llvm.x86.seh.recoverframe does in the old model.
64-bit funclets need to spill CSRs as normal. For simplicity, this just
spills the same set of CSRs as the parent function, rather than trying
to compute different CSR sets for the parent function and each funclet.
64-bit funclets also allocate enough stack space for the largest
outgoing call frame, like 32-bit.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12546
llvm-svn: 247092
Summary: This patch modifies X86TargetLowering::LowerVASTART so that
struct va_list is initialized with 32 bit pointers in x32. It also
includes tests that call @llvm.va_start() for x32.
Patch by João Porto
Subscribers: llvm-commits, hjl.tools
Differential Revision: http://reviews.llvm.org/D12346
llvm-svn: 247069
The old implementation assumed LP64 which is broken for x32. Specifically, the
MOVE8rm_NOREX and MOVE8mr_NOREX, when selected, would cause a 'Cannot emit
physreg copy instruction' error message to be reported.
This patch also enable the h-register*ll tests for x32.
Differential Revision: http://reviews.llvm.org/D12336
Patch by João Porto
llvm-svn: 247058
sub C, x - > add (sub 0, x), C for DS offsets.
This is mostly to fix regressions that show up when
SeparateConstOffsetFromGEP is enabled.
llvm-svn: 247054
Summary: And define them to have noop casts with address spaces 0-255.
Reviewers: pekka.jaaskelainen
Subscribers: pekka.jaaskelainen, llvm-commits
Differential Revision: http://reviews.llvm.org/D12678
llvm-svn: 246990