1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
Commit Graph

10698 Commits

Author SHA1 Message Date
Sanjay Patel
5a14ea148e [InstSimplify] fold min/max with limit constant
This is already done within InstCombine:
https://alive2.llvm.org/ce/z/MiGE22

...but leaving it out of analysis makes it
harder to avoid infinite loops there.

(cherry picked from commit e260e10c4a21784c146c94a2a14b7e78b09a9cf7)
2021-08-16 11:35:29 -07:00
Sanjay Patel
d4eedb2312 [Analysis] improve function signature checking for snprintf
The check for size_t parameter 1 was already here for snprintf_chk,
but it wasn't applied to regular snprintf. This could lead to
mismatching and eventually crashing as shown in:
https://llvm.org/PR50885

(cherry picked from commit 7f5555776513f174729a686ed01270e23462aaf7)
2021-08-02 22:58:39 -07:00
Mircea Trofin
506c974562 [MLGO] fix silly LLVM_DEBUG misuse 2021-07-27 15:10:28 -07:00
Mircea Trofin
f4b486c976 [NFC][MLGO] Debug messages for what inline advisor is selected
We already have an indication (error) if the desired inline advisor
cannot be enabled, but we don't have a positive indication. Added
LLVM_DEBUG messages for the latter.
2021-07-27 15:05:39 -07:00
Anna Thomas
b8af1d6561 [IVDescriptors] Fix bug in checkOrderedReduction
The Exit instruction passed in for checking if it's an ordered reduction need not be
an FPAdd operation. We need to bail out at that point instead of
assuming it is an FPAdd (and hence has two operands). See added testcase.
It crashes without the patch because the Exit instruction is a phi with
exactly one operand.
This latent bug was exposed by 95346ba which added support for
multi-exit loops for vectorization.

Reviewed-By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106843
2021-07-27 09:31:44 -04:00
Johannes Doerfert
86cba7bf5e [InstSimplify] Expose generic interface for replaced operand simplification
Users, especially the Attributor, might replace multiple operands at
once. The actual implementation of simplifyWithOpReplaced is able to
handle that just fine, the interface was simply not allowing to replace
more than one operand at a time. This is exposing a more generic
interface without intended changes for existing code.

Differential Revision: https://reviews.llvm.org/D106189
2021-07-27 00:56:12 -05:00
Philip Reames
b21820b66f [SCEV] Add a comment about invariant in howManyLessThans 2021-07-26 16:39:26 -07:00
Eli Friedman
2211738092 [LLVM IR] Allow volatile stores to trap.
Proposed alternative to D105338.

This is ugly, but short-term I think it's the best way forward: first,
let's formalize the hacks into a coherent model. Then we can consider
extensions of that model (we could have different flavors of volatile
with different rules).

Differential Revision: https://reviews.llvm.org/D106309
2021-07-26 10:51:00 -07:00
Florian Hahn
3ef6cc6cad [LAA] Remove RuntimeCheckingPtrGroup::RtCheck member (NFC).
This patch removes RtCheck from RuntimeCheckingPtrGroup to make it
possible to construct RuntimeCheckingPtrGroup objects without a
RuntimePointerChecking object. This should make it easier to
re-use the code to generate runtime checks, e.g. in D102834.

RtCheck was only used to access the pointer info for a given index.
Instead, the start and end expressions can be passed directly.

For code-gen, we also need to know the address space to use. This can
also be explicitly passed at construction.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D105481
2021-07-26 17:38:10 +01:00
Nikita Popov
bab200ac44 [IR] Consider non-willreturn as side effect (PR50511)
This adjusts mayHaveSideEffect() to return true for !willReturn()
instructions. Just like other side-effects, non-willreturn calls
(aka "divergence") cannot be removed and cannot be reordered relative
to other side effects. This fixes a number of bugs where
non-willreturn calls are either incorrectly dropped or moved. In
particular, it also fixes the last open problem in
https://bugs.llvm.org/show_bug.cgi?id=50511.

I performed a cursory review of all current mayHaveSideEffect()
uses, which convinced me that these are indeed the desired default
semantics. Places that do not want to consider non-willreturn as a
sideeffect generally do not want mayHaveSideEffect() semantics at
all. I identified two such cases, which are addressed by D106591
and D106742. Finally, there is a use in SCEV for which we don't
really have an appropriate API right now -- what it wants is
basically "would this be considered forward progress". I've just
spelled out the previous semantics there.

Differential Revision: https://reviews.llvm.org/D106749
2021-07-26 16:35:14 +02:00
Paul Walker
fc75021aa7 [NFC] Change VFShape so it contains an ElementCount rather than seperate VF and IsScalable properties.
Differential Revision: https://reviews.llvm.org/D106750
2021-07-26 12:25:46 +01:00
Philipp Krones
d7917544a3 [Inliner] Make the CallPenalty configurable
Tests with multiple benchmarks, like Embench [1], showed that the
CallPenalty magic number has the most influence on inlining decisions
when optimizing for size.

On the other hand, there was no good default value for this parameter.
Some benchmarks profited strongly from a reduced call penalty. On
example is the picojpeg benchmark compiled for RISC-V, which got 6%
smaller with a CallPenalty of 10 instead of 12. Other benchmarks
increased in size, like matmult.

This commit makes the compromise of turning the magic number constant of
CallPenalty into a configurable value. This introduces the flag
`--inline-call-penalty`. With that flag users can fine tune the inliner
to their needs.

The CallPenalty constant was also used for loops. This commit replaces
the CallPenalty constant with a new LoopPenalty constant that is now
used instead.

This is a slimmed down version of https://reviews.llvm.org/D30899

[1]: https://github.com/embench/embench-iot

Differential Revision: https://reviews.llvm.org/D105976
2021-07-26 12:07:49 +01:00
David Sherwood
2d2e4a1b17 [Analysis] Add simple cost model for strict (in-order) reductions
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:

  1. Tree-wise. This is the typical fast-math reduction that involves
  continually splitting a vector up into halves and adding each
  half together until we get a scalar result. This is the default
  behaviour for integers, whereas for floating point we only do this
  if reassociation is allowed.
  2. Ordered. This now allows us to estimate the cost of performing
  a strict vector reduction by treating it as a series of scalar
  operations in lane order. This is the case when FP reassociation
  is not permitted. For scalable vectors this is more difficult
  because at compile time we do not know how many lanes there are,
  and so we use the worst case maximum vscale value.

I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.

New tests have been added here:

  Analysis/CostModel/AArch64/reduce-fadd.ll
  Analysis/CostModel/AArch64/sve-intrinsics.ll
  Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
  Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll

Differential Revision: https://reviews.llvm.org/D105432
2021-07-26 10:26:06 +01:00
Liqiang Tao
4952863892 [llvm][Inline] Add interface to return cost-benefit stuff
Return cost-benefit stuff which is computed by cost-benefit analysis.

Reviewed By: mtrofin

Differential Revision: https://reviews.llvm.org/D105349
2021-07-25 20:18:19 +08:00
Philip Reames
429872ef0c Style tweaks for SCEV's computeMaxBECountForLT [NFC] 2021-07-23 17:19:45 -07:00
Philip Reames
307c1ee33f [SCEV] Fix bug involving zero step and non-invariant RHS in trip count logic
Eli pointed out the issue when reviewing D104140. The max trip count logic makes an assumption that the value of IV changes. When the step is zero, the nowrap fact becomes trivial, and thus there's nothing preventing the loop from being nearly infinite. (The "nearly" part is because mustprogress may disallow an infinite loop while still allowing 999999999 iterations before RHS happens to allow an exit.)

This is very difficult to see in practice. You need a means to produce a loop varying RHS in a mustprogress loop which doesn't allow the loop to be infinite. In most cases, LICM or SCEV are smart enough to remove the loop varying expressions.

Differential Revision: https://reviews.llvm.org/D106327
2021-07-23 15:19:23 -07:00
Mircea Trofin
4559a48614 [NFC][MLGO] Just use the underlying protobuf object for logging
Avoid buffering just to copy the buffered data, in 'development
mode', when logging. Instead, just populate the underlying protobuf.

Differential Revision: https://reviews.llvm.org/D106592
2021-07-23 10:56:48 -07:00
Serge Pavlov
865c54f488 [ConstantFolding] Fold constrained arithmetic intrinsics
Constfold constrained variants of operations fadd, fsub, fmul, fdiv,
frem, fma and fmuladd.

The change also sets up some means to support for removal of unused
constrained intrinsics. They are declared as accessing memory to model
interaction with floating point environment, so they were not removed,
as they have side effect. Now constrained intrinsics that have
"fpexcept.ignore" as exception behavior are removed if they have no uses.
As for intrinsics that have exception behavior other than "fpexcept.ignore",
they can be removed if it is known that they do not raise floating point
exceptions. It happens when doing constant folding, attributes of such
intrinsic are changed so that the intrinsic is not claimed as accessing
memory.

Differential Revision: https://reviews.llvm.org/D102673
2021-07-23 14:39:51 +07:00
Mircea Trofin
294f763d01 [NFC][MLGO] Fix vector sizing
The bots only build release mode, and the use of `reserve` instead of
`resize`, while not causing invalid memory accesses, is incorrect.
2021-07-22 13:06:00 -07:00
Joseph Huber
472a223072 [OpenMP] Change __kmpc_free_shared to include the paired allocation size
This patch changes `__kmpc_free_shared` to take an additional argument
corresponding to the associated allocation's size. This makes it easier to
implement the allocator in the runtime.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D106496
2021-07-21 20:56:21 -04:00
Jacob Hegna
2182633955 [NFC] Code cleanups in InlineCost.cpp.
- annotate const functions with "const"
 - replace C-style casts with static_cast

Differential Revision: https://reviews.llvm.org/D105362
2021-07-22 00:03:36 +00:00
Kerry McLaughlin
b539edfe7a Revert "[LV] Use lookThroughAnd with logical reductions"
Reverting patch due to buildbot failures.

This reverts commit e22a59967251294ccdac6b43a06f48c1b7075240.
2021-07-21 15:16:00 +01:00
Rosie Sumpter
b11b07e0b8 [LoopFlatten][LoopInfo] Use Loop to identify latch compare instruction
Make getLatchCmpInst non-static and use it in LoopFlatten as a more
robust way of identifying the compare.

Differential Revision: https://reviews.llvm.org/D106256
2021-07-21 10:14:18 +01:00
Kerry McLaughlin
8625c5dcda [LV] Use lookThroughAnd with logical reductions
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-21 09:56:00 +01:00
Sanjay Patel
cc2611c224 [ConstantFolding] avoid crashing on a fake math library call
https://llvm.org/PR50960
2021-07-20 18:25:21 -04:00
Jacob Hegna
a61a8e3a6d Fix Threshold overwrite bug in the Oz inlining model features.
Differential Revision: https://reviews.llvm.org/D106336
2021-07-20 18:05:06 +00:00
Eli Friedman
18c83b5d27 [ScalarEvolution] Refine computeMaxBECountForLT to be accurate in more cases.
Allow arbitrary strides, and make sure we return the correct result when
the backedge-taken count is zero.

Differential Revision: https://reviews.llvm.org/D106197
2021-07-19 15:43:30 -07:00
Philip Reames
0f6ddbc33f [SCEV] Add a clarifying comment in howManyLessThans
Wrap semantics are subtle when combined with multiple exits.  This has caused several rounds of confusion during recent reviews, so try to document the subtly distinction between when wrap flags provide <u and <=u facts.
2021-07-19 15:13:48 -07:00
Arthur Eubanks
0b315633ca [NewPM] Bail out of devirtualization wrapper if the current SCC is invalidated
The specific case that triggered this was when inlining a recursive
internal function into itself caused the recursion to go away, allowing
the inliner to mark the function as dead. The inliner marks the SCC as
invalidated but does not provide a new SCC to continue with.

This matches the implementations of ModuleToPostOrderCGSCCPassAdaptor
and CGSCCPassManager.

Fixes PR50363.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D106306
2021-07-19 15:07:30 -07:00
Mircea Trofin
846c3e0e7d [MLGO] Use binary protobufs for improved training performance.
It turns out that during training, the time required to parse the
textual protobuf of a training log is about the same as the time it
takes to compile the module generating that log. Using binary protobufs
instead elides that cost almost completely.

Differential Revision: https://reviews.llvm.org/D106157
2021-07-19 13:59:28 -07:00
Mindong Chen
a1b9277190 [LoopUtils] Fix incorrect RT check bounds of loop-invariant mem accesses
This fixes the lower and upper bound calculation of a
RuntimeCheckingPtrGroup when it has more than one loop
invariant pointers. Resolves PR50686.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D104148
2021-07-19 19:38:24 +08:00
Nikita Popov
a03f107e86 [SCEV] Fix unused variable warning (NFC) 2021-07-18 23:12:22 +02:00
Wenlei He
931e744998 [CSSPGO][NFC] Allow cl::ZeroOrMore for use-iterative-bfi-inference 2021-07-18 13:22:32 -07:00
Eli Friedman
fac82d2674 [ScalarEvolution] Remove uses of PointerType::getElementType. 2021-07-18 13:14:33 -07:00
Kazu Hirata
a471532d2a [Analaysis, CodeGen] Remove getHotSucc (NFC)
These functions seem to be unused for at least 5 years.
2021-07-17 07:31:36 -07:00
Eli Friedman
05a71b0a6d [ScalarEvolution] Fix overflow in computeBECount.
The current implementation of computeBECount doesn't account for the
possibility that adding "Stride - 1" to Delta might overflow. For almost
all loops, it doesn't, but it's not actually proven anywhere.

To deal with this, use a variety of tricks to try to prove that the
addition doesn't overflow.  If the proof is impossible, use an alternate
sequence which never overflows.

Differential Revision: https://reviews.llvm.org/D105216
2021-07-16 16:15:18 -07:00
Eli Friedman
b7cade9437 [DependenceAnalysis] Guard analysis using getPointerBase().
D104806 broke some uses of getMinusSCEV() in DependenceAnalysis:
subtraction with different pointer bases returns a SCEVCouldNotCompute.
Make sure we avoid cases involving such subtractions.

Differential Revision: https://reviews.llvm.org/D106099
2021-07-15 14:57:32 -07:00
Philip Reames
6a45d08863 [SCEV] Fix unsound reasoning in howManyLessThans
This is split from D105216, it handles only a subset of the cases in that patch.

Specifically, the issue being fixed is that the code incorrectly assumed that (Start-Stide) < End implied that the backedge was taken at least once. This is not true when e.g. Start = 4, Stride = 2, and End = 3. Note that we often do produce the right backedge taken count despite the flawed reasoning.

The fix chosen here is to use an alternate form of uceil (ceiling of unsigned divide) lowering which is safe when max(RHS,Start) > Start - Stride.  (Note that signedness of both max expression and comparison depend on the signedness of the comparison being analyzed, and that overflow in the Start - Stride expression is allowed.)  Note that this is weaker than proving the backedge is taken because it allows start - stride < end < start.  Some cases which can't be proven safe are sent down the generic path, and we do end up generating less optimal expressions in a few cases.

Credit for coming up with the approach goes entirely to Eli.  I just split it off, tweaked the comments a bit, and did some additional testing.

Differential Revision: https://reviews.llvm.org/D105942
2021-07-15 10:32:47 -07:00
Philip Reames
dbffa1f255 [SCEV] Handle zero stride correctly in howManyLessThans
This is split from D105216, but the code is hoisted much earlier into
the path where we can actually get a zero stride flowing through. Some
fairly simple proofs handle the cases which show up in practice. The
only test changes are the cases where we really do need a non-zero
divider to produce the right result.

Recommitting with isLoopInvariant() check.

Differential Revision: https://reviews.llvm.org/D105921
2021-07-13 19:14:01 -07:00
Arthur Eubanks
222304d82f Revert "[SCEV] Handle zero stride correctly in howManyLessThans"
This reverts commit 4df591b5c960affd1612e330d0c9cd3076c18053.

Causes crashes, see comments on D105921.
2021-07-13 17:53:48 -07:00
Eli Friedman
60fc4afb9a [ScalarEvolution] Make isKnownNonZero handle more cases.
Using an unsigned range instead of signed ranges is a bit more precise.

Differential Revision: https://reviews.llvm.org/D105941
2021-07-13 15:36:45 -07:00
Philip Reames
50475a84ee [SCEV] Handle zero stride correctly in howManyLessThans
This is split from D105216, but the code is hoisted much earlier into the path where we can actually get a zero stride flowing through. Some fairly simple proofs handle the cases which show up in practice. The only test changes are the cases where we really do need a non-zero divider to produce the right result.

Differential Revision: https://reviews.llvm.org/D105921
2021-07-13 13:31:40 -07:00
Philip Reames
3fbf51e263 [SCEV] Strengthen inference of RHS > Start in howManyLessThans
Split off from D105216 to simplify review.  Rewritten with a lambda to be easier to follow.  Comments clarified.

Sorry for no test case, this is tricky to exercise with the current structure of the code.  It's about to be hit more frequently in a follow up patch, and the change itself is simple.
2021-07-13 11:54:07 -07:00
Philip Reames
d721cdd01e [ScalarEvolution] Fix overflow when computing max trip counts
This is split from D105216 to reduce patch complexity.  Original code by Eli with very minor modification by me.

The primary point of this patch is to add the getUDivCeilSCEV routine.  I included the two callers with constant arguments as we know those must constant fold even without any of the fancy inference logic.
2021-07-13 10:01:10 -07:00
Nikita Popov
2812298c44 [Attributes] Replace doesAttrKindHaveArgument() (NFC)
This is now the same as isIntAttrKind(), so use that instead, as
it does not require manual maintenance. The naming is also more
accurate in that both int and type attributes have an argument,
but this method was only targeting int attributes.

I initially wanted to tighten the AttrBuilder assertion, but we
have some in-tree uses that would violate it.
2021-07-12 21:57:26 +02:00
Kazu Hirata
a6c7669e73 [Analysis] Remove changeCondBranchToUnconditionalTo (NFC)
The last use was removed on Jan 21, 2021 in commit
0895b836d74ed333468ddece2102140494eb33b6.
2021-07-10 17:31:43 -07:00
Eli Friedman
82979ca051 Fix buildbot regression from 9c4baf5.
Apparently ScalarEvolution::isImpliedCond tries to truncate a pointer in
some obscure cases. Guard the code with a check for pointers.
2021-07-09 17:54:09 -07:00
Eli Friedman
5e023f461c [ScalarEvolution] Strictly enforce pointer/int type rules.
Rules:

1. SCEVUnknown is a pointer if and only if the LLVM IR value is a
   pointer.
2. SCEVPtrToInt is never a pointer.
3. If any other SCEV expression has no pointer operands, the result is
   an integer.
4. If a SCEVAddExpr has exactly one pointer operand, the result is a
   pointer.
5. If a SCEVAddRecExpr's first operand is a pointer, and it has no other
   pointer operands, the result is a pointer.
6. If every operand of a SCEVMinMaxExpr is a pointer, the result is a
   pointer.
7. Otherwise, the SCEV expression is invalid.

I'm not sure how useful rule 6 is in practice.  If we exclude it, we can
guarantee that ScalarEvolution::getPointerBase always returns a
SCEVUnknown, which might be a helpful property. Anyway, I'll leave that
for a followup.

This is basically mop-up at this point; all the changes with significant
functional effects have landed.  Some of the remaining changes could be
split off, but I don't see much point.

Differential Revision: https://reviews.llvm.org/D105510
2021-07-09 17:29:26 -07:00
Nikita Popov
103545107e [IR] Add GEPOperator::indices() (NFC)
In order to mirror the GetElementPtrInst::indices() API.

Wanted to use this in the IRForTarget code, and was surprised to
find that it didn't exist yet.
2021-07-09 21:41:20 +02:00
Kevin P. Neal
1696270de0 [FPEnv][InstSimplify] Constrained FP support for NaN
Currently InstructionSimplify.cpp knows how to simplify floating point
instructions that have a NaN operand. It does not know how to handle the
matching constrained FP intrinsic.

This patch teaches it how to simplify so long as the exception handling
is not "fpexcept.strict".

Differential Revision: https://reviews.llvm.org/D103169
2021-07-09 11:26:28 -04:00