This commit fixes PR39321.
GlobalExtensions is not guaranteed to be destroyed when optimizer plugins are unloaded. If it is indeed destroyed after a plugin is dlclose-d, the destructor of the corresponding ExtensionFn is not mapped anymore, causing a call to unmapped memory during destruction.
This commit guarantees that extensions coming from external plugins are removed from GlobalExtensions when the plugin is unloaded if GlobalExtensions has not been destroyed yet.
Differential Revision: https://reviews.llvm.org/D71959
Summary:
Due to the fact that kill is just a normal intrinsic, even though it's
supposed to terminate the thread, we can end up with provably infinite
loops that are actually supposed to end successfully. The
AMDGPUUnifyDivergentExitNodes pass breaks up these loops, but because
there's no obvious place to make the loop branch to, it just makes it
return immediately, which skips the exports that are supposed to happen
at the end and hangs the GPU if all the threads end up being killed.
While it would be nice if the fact that kill terminates the thread were
modeled in the IR, I think that the structurizer as-is would make a mess if we
did that when the kill is inside control flow. For now, we just add a null
export at the end to make sure that it always exports something, which fixes
the immediate problem without penalizing the more common case. This means that
we sometimes do two "done" exports when only some of the threads enter the
discard loop, but from tests the hardware seems ok with that.
This fixes dEQP-VK.graphicsfuzz.while-inside-switch with radv.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70781
SIMachineScheduler uses isHighLatencyInstruction with the same
sematincs, but TargetInstrInfo has virtual isHighLatencyDef
method, so override it instead.
Added FLAT to the list of high latency opcodes and a check for
mayLoad since stores are not technically high latency in terms
of data dependency.
This change did not produce any visible impact on our tests.
Differential Revision: https://reviews.llvm.org/D73582
Convert to the style most others use with one test instruction per
function, and use an implicit use to ensure the result register class
is constrained.
Change-Id: I6109148b0e3c80aa5535796a37abca583c19a936
proven safe.
Summary:
Currently LoopFusion give up when the second loop nest preheader is
not empty. For example:
for (int i = 0; i < 100; ++i) {}
x+=1;
for (int i = 0; i < 100; ++i) {}
The above example should be safe to fuse.
This PR moves instructions in FC1 preheader (e.g. x+=1; ) to
FC0 preheader, which then LoopFusion is able to fuse them.
Reviewer: kbarton, Meinersbur, jdoerfert, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71821
Summary:
udiv/sdiv/urem/srem/mul integer isel patterns and tests.
Pretend for now that integer division were always cheap in HW.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D73623
This should be no problem to support with a pattern, but it turns out
there are just too many yaks to shave. The main problem is in the DAG
emitter, which I have no desire to sink effort into fixing.
If we had a bit to disable patterns in the DAG importer, fixing the
GlobalISelEmitter is more manageable.
Summary:
The code was assuming in a few places that if there was only one exit
from the function that it was a normal return, which is invalid. It
could be an infinite loop, in which case we still need to insert the
usual fake edge so that the null export happens. This fixes shaders that
end with an infinite loop that discards.
Reviewers: arsenm, nhaehnle, critson
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71192
Summary:
Due to the fact that kill is just a normal intrinsic, even though it's
supposed to terminate the thread, we can end up with provably infinite
loops that are actually supposed to end successfully. The
AMDGPUUnifyDivergentExitNodes pass breaks up these loops, but because
there's no obvious place to make the loop branch to, it just makes it
return immediately, which skips the exports that are supposed to happen
at the end and hangs the GPU if all the threads end up being killed.
While it would be nice if the fact that kill terminates the thread were
modeled in the IR, I think that the structurizer as-is would make a mess if we
did that when the kill is inside control flow. For now, we just add a null
export at the end to make sure that it always exports something, which fixes
the immediate problem without penalizing the more common case. This means that
we sometimes do two "done" exports when only some of the threads enter the
discard loop, but from tests the hardware seems ok with that.
This fixes dEQP-VK.graphicsfuzz.while-inside-switch with radv.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70781
cmp (splat V1, M), SplatC --> splat (cmp V1, SplatC'), M
As discussed in PR44588:
https://bugs.llvm.org/show_bug.cgi?id=44588
...we try harder to push shuffles after binops than after compares.
This patch handles the special (but presumably most common case) of
splat shuffles. If both operands are splats, then we can do the
comparison on the non-splat inputs followed by splat of the compare.
That should take care of the regression noted in D73411.
There's another potential fold requested in PR37463 to scalarize the
compare, but that's another patch (and it's not clear if we can do
that without the ability to undo it later):
https://bugs.llvm.org/show_bug.cgi?id=37463
Differential Revision: https://reviews.llvm.org/D73575
Summary:
Currently, sqdmulh_lane and friends from the ACLE (implemented in arm_neon.h),
are represented in LLVM IR as a (by vector) sqdmulh and a vector of (repeated)
indices, like so:
%shuffle = shufflevector <4 x i16> %v, <4 x i16> undef, <4 x i32> <i32 3, i32 3, i32 3, i32 3>
%vqdmulh2.i = tail call <4 x i16> @llvm.aarch64.neon.sqdmulh.v4i16(<4 x i16> %a, <4 x i16> %shuffle)
When %v's values are known, the shufflevector is optimized away and we are no
longer able to select the lane variant of sqdmulh in the backend.
This defeats a (hand-coded) optimization that packs several constants into a
single vector and uses the lane intrinsics to reduce register pressure and
trade-off materialising several constants for a single vector load from the
constant pool, like so:
int16x8_t v = {2,3,4,5,6,7,8,9};
a = vqdmulh_laneq_s16(a, v, 0);
b = vqdmulh_laneq_s16(b, v, 1);
c = vqdmulh_laneq_s16(c, v, 2);
d = vqdmulh_laneq_s16(d, v, 3);
[...]
In one microbenchmark from libjpeg-turbo this accounts for a 2.5% to 4%
performance difference.
We could teach the compiler to recover the lane variants, but this would likely
require its own pass. (Alternatively, "volatile" could be used on the constants
vector, but this is a bit ugly.)
This patch instead implements the following LLVM IR intrinsics for AArch64 to
maintain the original structure through IR optmization and into instruction
selection:
- sqdmulh_lane
- sqdmulh_laneq
- sqrdmulh_lane
- sqrdmulh_laneq.
These 'lane' variants need an additional register class. The second argument
must be in the lower half of the 64-bit NEON register file, but only when
operating on i16 elements.
Note that the existing patterns for shufflevector and sqdmulh into sqdmulh_lane
(etc.) remain, so code that does not rely on NEON intrinsics to generate these
instructions is not affected.
This patch also changes clang to emit these IR intrinsics for the corresponding
NEON intrinsics (AArch64 only).
Reviewers: SjoerdMeijer, dmgreen, t.p.northover, rovka, rengolin, efriedma
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, jdoerfert, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71469
This adds some missing MVE opcodes to evaluateBranch, which results in
llvm-objdump being able to print the PC relative branch target as an
annotation.
Differential Revision: https://reviews.llvm.org/D73553
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "assume
stated length is correct" is taken which means the offset might need
adjusting.
This is a relanding of b94191fe, fixing an LLD test and the LLDB build.
Reviewed by: dblaikie, labath
Differential Revision: https://reviews.llvm.org/D72158
Summary:
This removes a couple of unnecessary isReg checks, now that
memOpsHaveSameBasePtr can handle FI operands, but is otherwise NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73485
Add several new helpers to RDA:
- hasLocalDefBefore
- isRegDefinedAfter
- isSafeToDefRegAt
And move two bits of logic from ARMLowOverheadLoops into RDA:
- isSafeToMove
- isSafeToRemove
Both of these have some wrappers too to make them more convienent to
use.
Differential Revision: https://reviews.llvm.org/D73460
For `ret i64 add (i64 ptrtoint (i32* @foo to i64), i64 1701208431)`,
```
X86DAGToDAGISel::matchAdd
...
// AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
// Try folding offset but fail; there is a symbolic displacement, so offset cannot be too large
!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
return false;
...
// Try again after commuting the operands.
// AM.Disp = Val; foldOffsetIntoAddress() does not know there will be a symbolic displacement
if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
// AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
!matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
// Succeeded! Produced leaq sym+disp(%rip),...
return false;
```
`foldOffsetIntoAddress()` currently does not know there is a symbolic
displacement and can fold a large offset.
The produced `leaq sym+disp(%rip), %rax` instruction is relocated by
an R_X86_64_PC32. If disp is large and sym+disp-rip>=2**31, there
will be a relocation overflow.
This approach is still not elegant. Unfortunately the isRIPRelative
interface is a bit clumsy. I tried several solutions and eventually
picked this one.
Differential Revision: https://reviews.llvm.org/D73606
There was a TODO in AAValueConstantRangeArgument to reuse
AAArgumentFromCallSiteArguments. We now do this by allowing new States
to be build from the bestState.
If we invalidate an attribute we need to inform all dependent ones even
if the fixpoint state is not invalid. Before we only continued
invalidation if the fixpoint state was invalid, now we signal a change
in case the fixpoint state is valid.
The test case was already included in D71620 but the problem was hiding
because it only manifested with the old PM (for that input).
This patch modularizes the way we check for no-alias call site arguments
by putting the existing logic into helper functions. The reasoning was
not changed but special cases for readonly/readnone were added.
If `null` is not defined we cannot access it, hence the pointer is
`noalias`. While this is not helpful on it's own it simplifies later
deductions that can skip over already known `noalias` pointers in
certain situations.