1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 12:43:36 +01:00
Commit Graph

317 Commits

Author SHA1 Message Date
Sjoerd Meijer
6a49dbd1a3 Function Specialization Pass
This adds a function specialization pass to LLVM. Constant parameters
like function pointers and constant globals are propagated to the callee by
specializing the function.

This is a first version with a number of limitations:
- The pass is off by default, so needs to be enabled on the command line,
- It does not handle specialization of recursive functions,
- It does not yet handle constants and constant ranges,
- Only 1 argument per function is specialised,
- The cost-model could be further looked into, and perhaps related,
- We are not yet caching analysis results.

This is based on earlier work by Matthew Simpson (D36432) and Vinay Madhusudan.
More recently this was also discussed on the list, see:

https://lists.llvm.org/pipermail/llvm-dev/2021-March/149380.html.

The motivation for this work is that function specialisation often comes up as
a reason for performance differences of generated code between LLVM and GCC,
which has this enabled by default from optimisation level -O3 and up. And while
this certainly helps a few cpu benchmark cases, this also triggers in real
world codes and is thus a generally useful transformation to have in LLVM.

Function specialisation has great potential to increase compile-times and
code-size.  The summary from some investigations with this patch is:
- Compile-time increases for short compile jobs is high relatively, but the
  increase in absolute numbers still low.
- For longer compile-jobs, the extra compile time is around 1%, and very much
  in line with GCC.
- It is difficult to blame one thing for compile-time increases: it looks like
  everywhere a little bit more time is spent processing more functions and
  instructions.
- But the function specialisation pass itself is not very expensive; it doesn't
  show up very high in the profile of the optimisation passes.

The goal of this work is to reach parity with GCC which means that eventually
we would like to get this enabled by default. But first we would like to address
some of the limitations before that.

Differential Revision: https://reviews.llvm.org/D93838
2021-06-11 09:11:29 +01:00
Simon Moll
b4f3331ca0 Recommit "[VP,Integer,#2] ExpandVectorPredication pass"
This reverts the revert 02c5ba8679873e878ae7a76fb26808a47940275b

Fix:

Pass was registered as DUMMY_FUNCTION_PASS causing the newpm-pass
functions to be doubly defined. Triggered in -DLLVM_ENABLE_MODULE=1
builds.

Original commit:

This patch implements expansion of llvm.vp.* intrinsics
(https://llvm.org/docs/LangRef.html#vector-predication-intrinsics).

VP expansion is required for targets that do not implement VP code
generation. Since expansion is controllable with TTI, targets can switch
on the VP intrinsics they do support in their backend offering a smooth
transition strategy for VP code generation (VE, RISC-V V, ARM SVE,
AVX512, ..).

Reviewed By: rogfer01

Differential Revision: https://reviews.llvm.org/D78203
2021-05-04 11:47:52 +02:00
Adrian Prantl
32b1ee25e7 Revert "[VP,Integer,#2] ExpandVectorPredication pass"
This reverts commit 43bc584dc05e24c6d44ece8e07d4bff585adaf6d.

The commit broke the -DLLVM_ENABLE_MODULES=1 builds.

http://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/31603/consoleFull#2136199809a1ca8a51-895e-46c6-af87-ce24fa4cd561
2021-04-30 17:02:28 -07:00
Simon Moll
63ed8031a5 [VP,Integer,#2] ExpandVectorPredication pass
This patch implements expansion of llvm.vp.* intrinsics
(https://llvm.org/docs/LangRef.html#vector-predication-intrinsics).

VP expansion is required for targets that do not implement VP code
generation. Since expansion is controllable with TTI, targets can switch
on the VP intrinsics they do support in their backend offering a smooth
transition strategy for VP code generation (VE, RISC-V V, ARM SVE,
AVX512, ..).

Reviewed By: rogfer01

Differential Revision: https://reviews.llvm.org/D78203
2021-04-30 15:47:28 +02:00
Joseph Huber
56eaebd6b2 [OpenMP] Add OpenMPOpt as a Module pass
Summary:
This patch registers OpenMPOpt as a Module pass in addition to a CGSCC
pass. This is so certain optimzations that are sensitive to intact
call-sites can happen before inlining. The old `openmpopt` pass name is
changed to `openmp-opt-cgscc` and `openmp-opt` calls the Module pass.
The current module pass only runs a single check but will be expanded in
the future.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D99202
2021-04-20 12:28:58 -04:00
Anna Thomas
ea0d3b5f95 [ScalarizeMaskedMemIntrin] Add new PM support
This patch adds new PM support for the pass and the pass can be now used
during middle-end transforms. The old pass is remamed to
ScalarizeMaskedMemIntrinLegacyPass.

Reviewed-By: skatkov, aeubanks
Differential Revision: https://reviews.llvm.org/D92743
2020-12-08 17:15:22 -05:00
Nikita Popov
0e6a699715 [AA] Split up LocationSize::unknown()
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).

This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.

The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.

Differential Revision: https://reviews.llvm.org/D91649
2020-11-26 18:39:55 +01:00
Sjoerd Meijer
c208ece583 [LoopFlatten] Add a loop-flattening pass
This is a simple pass that flattens nested loops.  The intention is to optimise
loop nests like this, which together access an array linearly:

  for (int i = 0; i < N; ++i)
    for (int j = 0; j < M; ++j)
      f(A[i*M+j]);

into one loop:

  for (int i = 0; i < (N*M); ++i)
    f(A[i]);

It can also flatten loops where the induction variables are not used in the
loop. This can help with codesize and runtime, especially on simple cpus
without advanced branch prediction.

This is only worth flattening if the induction variables are only used in an
expression like i*M+j. If they had any other uses, we would have to insert a
div/mod to reconstruct the original values, so this wouldn't be profitable.

This partially fixes PR40581 as this pass triggers on one of the two cases. I
will follow up on this to learn LoopFlatten a few more (small) tricks. Please
note that LoopFlatten is not yet enabled by default.

Patch by Oliver Stannard, with minor tweaks from Dave Green and myself.

Differential Revision: https://reviews.llvm.org/D42365
2020-10-01 13:54:45 +01:00
Arthur Eubanks
c01a5baad9 [DIE] Remove DeadInstEliminationPass
This pass is like DeadCodeEliminationPass, but only does one pass
through a function instead of iterating on users of eliminated
instructions.

DeadCodeEliminationPass should be used in all cases.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D87933
2020-09-21 12:12:25 -07:00
Arthur Eubanks
9f8be8e69b [NewPM][Lint] Port -lint to NewPM
This also changes -lint from an analysis to a pass. It's similar to
-verify, and that is a normal pass, and lives in llvm/IR.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D87057
2020-09-03 13:03:44 -07:00
Arthur Eubanks
224abd6796 Revert "[NewPM][Lint] Port -lint to NewPM"
This reverts commit 883399c8402188520870f99e7d8b3244f000e698.
2020-09-02 21:34:29 -07:00
Arthur Eubanks
bc13e99110 [NewPM][Lint] Port -lint to NewPM
This also changes -lint from an analysis to a pass. It's similar to
-verify, and that is a normal pass, and lives in llvm/IR.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D87057
2020-09-02 21:13:01 -07:00
Arthur Eubanks
d74ec65308 [ConstProp] Remove ConstantPropagation
As discussed in
http://lists.llvm.org/pipermail/llvm-dev/2020-July/143801.html.

Currently no users outside of unit tests.

Replace all instances in tests of -constprop with -instsimplify.
Notable changes in tests:
* vscale.ll - @llvm.sadd.sat.nxv16i8 is evaluated by instsimplify, use a fake intrinsic instead
* InsertElement.ll - insertelement undef is removed by instsimplify in @insertelement_undef
llvm/test/Transforms/ConstProp moved to llvm/test/Transforms/InstSimplify/ConstProp

Reviewed By: lattner, nikic

Differential Revision: https://reviews.llvm.org/D85159
2020-08-26 15:51:30 -07:00
Florian Hahn
5eea1c2f70 Recommit "[IPConstProp] Remove and move tests to SCCP."
This reverts commit 59d6e814ce0e7b40b7cc3ab136b9af2ffab9c6f8.

The cause for the revert (3 clang tests running opt -ipconstprop) was
fixed by removing those lines.
2020-08-02 22:23:54 +01:00
Florian Hahn
1316430704 Revert "[IPConstProp] Remove and move tests to SCCP."
This reverts commit e77624a3be942c7abba48942b3a8da3462070a3f.

Looks like some clang tests manually invoke -ipconstprop via opt.....
2020-07-30 13:06:54 +01:00
Florian Hahn
ce3655671a [IPConstProp] Remove and move tests to SCCP.
As far as I know, ipconstprop has not been used in years and ipsccp has
been used instead. This has the potential for confusion and sometimes
leads people to spend time finding & reporting bugs as well as
updating it to work with the latest API changes.

This patch moves the tests over to SCCP. There's one functional difference
I am aware of: ipconstprop propagates for each call-site individually, so
for functions that are called with different constant arguments it can sometimes
produce better results than ipsccp (at much higher compile-time cost).But
IPSCCP can be thought to do so as well for internal functions and as mentioned
earlier, the pass seems unused in practice (and there are no plans on working
towards enabling it anytime).

Also discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-July/143773.html

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D84447
2020-07-30 12:36:27 +01:00
Michal Paszkowski
71a369861c Revert "Added a new IRCanonicalizer pass."
This reverts commit 14d358537f124a732adad1ec6edf3981dc9baece.
2020-05-23 13:51:43 +02:00
Michal Paszkowski
bf322ed671 Added a new IRCanonicalizer pass.
Summary:
Added a new IRCanonicalizer pass which aims to transform LLVM modules into
a canonical form by reordering and renaming instructions while preserving the
same semantics. The canonicalizer makes it easier to spot semantic differences
when diffing two modules which have undergone different passes.

Presentation: https://www.youtube.com/watch?v=c9WMijSOEUg

Reviewed by: plotfi

Differential Revision: https://reviews.llvm.org/D66029
2020-05-23 12:45:53 +02:00
Sameer Sahasrabuddhe
ba6d13ef23 Introduce fix-irreducible pass
An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
with control-flow edges incident from outside the SCC. This pass converts an
irreducible SCC into a natural loop by introducing a single new header
block and redirecting all the edges on the original headers to this
new block.

This is a useful workaround for a limitation in the structurizer
which, which produces incorrect control flow in the presence of
irreducible regions. The AMDGPU backend provides an option to
enable this pass before the structurizer, which may eventually be
enabled by default.

Reviewed By: nhaehnle

Differential Revision: https://reviews.llvm.org/D77198

This restores commit 2ada8e2525dd2653f30c8696a27162a3b1647d66.

Originally reverted with commit 44e09b59b869a91bf47d76e8bc569d9ee91ad145.
2020-04-15 15:05:51 +05:30
Sameer Sahasrabuddhe
27fdd1e547 Revert "Introduce fix-irreducible pass"
This reverts commit 2ada8e2525dd2653f30c8696a27162a3b1647d66.

Buildbots produced compilation errors which I was not able to quickly
reproduce locally. Need more time to investigate.
2020-04-15 12:19:50 +05:30
Sameer Sahasrabuddhe
95dedc6807 Introduce fix-irreducible pass
An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
with control-flow edges incident from outside the SCC. This pass converts an
irreducible SCC into a natural loop by introducing a single new header
block and redirecting all the edges on the original headers to this
new block.

This is a useful workaround for a limitation in the structurizer
which, which produces incorrect control flow in the presence of
irreducible regions. The AMDGPU backend provides an option to
enable this pass before the structurizer, which may eventually be
enabled by default.

Reviewed By: nhaehnle

Differential Revision: https://reviews.llvm.org/D77198
2020-04-15 11:29:19 +05:30
Sameer Sahasrabuddhe
b4d5045713 Introduce unify-loop-exits pass.
For each natural loop with multiple exit blocks, this pass creates a
new block N such that all exiting blocks now branch to N, and then
control flow is redistributed to all the original exit blocks.

The bulk of the tranformation is a new function introduced in
BasicBlockUtils that an redirect control flow from a set of incoming
blocks to a set of outgoing blocks via a common "hub".

This is a useful workaround for a limitation in the structurizer which
incorrectly orders blocks when processing a nest of loops. This pass
bypasses that issue by ensuring that each natural loop is recognized
as a separate region. Since the structurizer is a region pass, it no
longer sees a nest of loops in a single region, and instead processes
each "level" in the nesting as a separate region.

The AMDGPU backend provides a new option to enable this pass before
the structurizer, which may eventually be enabled by default.

Reviewers: madhur13490, arsenm, nhaehnle

Reviewed By: nhaehnle

Differential Revision: https://reviews.llvm.org/D75865
2020-03-30 13:23:56 -04:00
Sanjay Patel
35167a94b8 [VectorCombine] new IR transform pass for partial vector ops
We have several bug reports that could be characterized as "reducing scalarization",
and this topic was also raised on llvm-dev recently:
http://lists.llvm.org/pipermail/llvm-dev/2020-January/138157.html
...so I'm proposing that we deal with these patterns in a new, lightweight IR vector
pass that runs before/after other vectorization passes.

There are 4 alternate options that I can think of to deal with this kind of problem
(and we've seen various attempts at all of these), but they all have flaws:

    InstCombine - can't happen without TTI, but we don't want target-specific
                  folds there.
    SDAG - too late to assist other vectorization passes; TLI is not equipped
           for these kind of cost queries; limited to a single basic block.
    CGP - too late to assist other vectorization passes; would need to re-implement
          basic cleanups like CSE/instcombine.
    SLP - doesn't fit with existing transforms; limited to a single basic block.

This initial patch/transform is based on existing code in AggressiveInstCombine:
we walk backwards through the function looking for a pattern match. But we diverge
from that cost-independent IR canonicalization pass by using TTI to decide if the
vector alternative is profitable.

We probably have at least 10 similar bug reports/patterns (binops, constants,
inserts, cheap shuffles, etc) that would fit in this pass as follow-up enhancements.
It's possible that we could iterate on a worklist to fix-point like InstCombine does,
but it's safer to start with a most basic case and evolve from there, so I didn't
try to do anything fancy with this initial implementation.

Differential Revision: https://reviews.llvm.org/D73480
2020-02-09 10:04:41 -05:00
Johannes Doerfert
9354843292 [Attributor] Add an Attributor CGSCC pass and run it
In addition to the module pass, this patch introduces a CGSCC pass that
runs the Attributor on a strongly connected component of the call graph
(both old and new PM). The Attributor was always design to be used on a
subset of functions which makes this patch mostly mechanical.

The one change is that we give up `norecurse` deduction in the module
pass in favor of doing it during the CGSCC pass. This makes the
interfaces simpler but can be revisited if needed.

Reviewed By: hfinkel

Differential Revision: https://reviews.llvm.org/D70767
2020-02-08 21:27:34 -06:00
Johannes Doerfert
96971b934b [OpenMP] Introduce the OpenMPOpt transformation pass
The OpenMPOpt pass is a CGSCC pass in which OpenMP specific
optimizations can reside.

The OpenMPOpt pass uses the OpenMPKinds.def file to identify runtime
calls and their uses. This allows targeted transformations and eases
their implementation.

This initial patch deduplicates `__kmpc_global_thread_num` and
`omp_get_thread_num` calls. We can also identify arguments that are
equivalent to such a call result and use it instead. Later we can
determine "gtid" arguments based on the use in kernel functions etc.

Reviewed By: JonChesterfield

Differential Revision: https://reviews.llvm.org/D69930
2020-02-08 14:47:03 -06:00
Bjorn Pettersson
e78a008dd1 [BasicBlockUtils] Add utility to remove redundant dbg.value instrs
Summary:
Add a RemoveRedundantDbgInstrs to BasicBlockUtils with the
goal to remove redundant dbg intrinsics from a basic block.

This can be useful after various transforms, as it might
be simpler to do a filtering of dbg intrinsics after the
transform than during the transform.
One primary use case would be to replace a too aggressive
removal done by MergeBlockIntoPredecessor, seen at loop
rotate (not done in this patch).

The elimination algorithm currently focuses on dbg.value
intrinsics and is doing two iterations over the BB.

First we iterate backward starting at the last instruction
in the BB. Whenever a consecutive sequence of dbg.value
instructions are found we keep the last dbg.value for
each variable found (variable fragments are identified
using the  {DILocalVariable, FragmentInfo, inlinedAt}
triple as given by the DebugVariable helper class).

Next we iterate forward starting at the first instruction
in the BB. Whenever we find a dbg.value describing a
DebugVariable (identified by {DILocalVariable, inlinedAt})
we save the {DIValue, DIExpression} that describes that
variables value. But if the variable already was mapped
to the same {DIValue, DIExpression} pair we instead drop
the second dbg.value.

To ease the process of making lit tests for this utility a
new pass is introduced called RedundantDbgInstElimination.
It can be executed by opt using -redundant-dbg-inst-elim.

Reviewers: aprantl, jmorse, vsk

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71478
2019-12-16 11:41:21 +01:00
Francesco Petrogalli
0a74d2ec75 [SVFS] Inject TLI Mappings in VFABI attribute.
This patch introduces a function pass to inject the scalar-to-vector
mappings stored in the TargetLIbraryInfo (TLI) into the Vector
Function ABI (VFABI) variants attribute.

The test is testing the injection for three vector libraries supported
by the TLI (Accelerate, SVML, MASSV).

The pass does not change any of the analysis associated to the
function.

Differential Revision: https://reviews.llvm.org/D70107
2019-11-15 18:42:56 +00:00
Alina Sbirlea
dfa5798f2b [LegacyPassManager] Delete BasicBlockPass/Manager.
Summary:
Delete the BasicBlockPass and BasicBlockManager, all its dependencies and update documentation.
The BasicBlockManager was improperly tested and found to be potentially broken, and was deprecated as of rL373254.

In light of the switch to the new pass manager coming before the next release, this patch is a first cleanup of the LegacyPassManager.

Reviewers: chandlerc, echristo

Subscribers: mehdi_amini, sanjoy.google, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69121
2019-10-30 11:40:16 -07:00
Joerg Sonnenberger
5200dee212 Reapply r374743 with a fix for the ocaml binding
Add a pass to lower is.constant and objectsize intrinsics

This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374784
2019-10-14 16:15:14 +00:00
Dmitri Gribenko
d8ea0e7773 Revert "Add a pass to lower is.constant and objectsize intrinsics"
This reverts commit r374743. It broke the build with Ocaml enabled:
http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/19218

llvm-svn: 374768
2019-10-14 12:22:48 +00:00
Joerg Sonnenberger
ea06f385c5 Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374743
2019-10-13 23:00:15 +00:00
Johannes Doerfert
1ae20d6fd6 [MustExec] Add a generic "must-be-executed-context" explorer
Given an instruction I, the MustBeExecutedContextExplorer allows to
easily traverse instructions that are guaranteed to be executed whenever
I is. For now, these instruction have to be statically "after" I, in
the same or different basic blocks.

This patch also adds a pass which prints the must-be-executed-context
for each instruction in a module. It is used to test the
MustBeExecutedContextExplorer, for now on the examples given in the
class comment of the MustBeExecutedIterator.

Differential Revision: https://reviews.llvm.org/D65186

llvm-svn: 369765
2019-08-23 15:17:27 +00:00
Sam Parker
7df94e8bbc [CodeGen] Generic Hardware Loop Support
Patch which introduces a target-independent framework for generating
hardware loops at the IR level. Most of the code has been taken from
PowerPC CTRLoops and PowerPC has been ported over to use this generic
pass. The target dependent parts have been moved into
TargetTransformInfo, via isHardwareLoopProfitable, with
HardwareLoopInfo introduced to transfer information from the backend.
    
Three generic intrinsics have been introduced:
- void @llvm.set_loop_iterations
  Takes as a single operand, the number of iterations to be executed.
- i1 @llvm.loop_decrement(anyint)
  Takes the maximum number of elements processed in an iteration of
  the loop body and subtracts this from the total count. Returns
  false when the loop should exit.
- anyint @llvm.loop_decrement_reg(anyint, anyint)
  Takes the number of elements remaining to be processed as well as
  the maximum numbe of elements processed in an iteration of the loop
  body. Returns the updated number of elements remaining.

llvm-svn: 362774
2019-06-07 07:35:30 +00:00
Johannes Doerfert
4293ce2dc3 [Attributor] Pass infrastructure and fixpoint framework
NOTE: Note that no attributes are derived yet. This patch will not go in
      alone but only with others that derive attributes. The framework is
      split for review purposes.

This commit introduces the Attributor pass infrastructure and fixpoint
iteration framework. Further patches will introduce abstract attributes
into this framework.

In a nutshell, the Attributor will update instances of abstract
arguments until a fixpoint, or a "timeout", is reached. Communication
between the Attributor and the abstract attributes that are derived is
restricted to the AbstractState and AbstractAttribute interfaces.

Please see the file comment in Attributor.h for detailed information
including design decisions and typical use case. Also consider the class
documentation for Attributor, AbstractState, and AbstractAttribute.

Reviewers: chandlerc, homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames

Subscribers: mehdi_amini, mgorny, hiraditya, bollu, steven_wu, dexonsmith, dang, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D59918

llvm-svn: 362578
2019-06-05 03:02:24 +00:00
Clement Courbet
3e42a1155f [MergeICmps] Make the pass compatible with the new pass manager.
Reviewers: gchatelet, spatel

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62287

llvm-svn: 361490
2019-05-23 12:35:26 +00:00
Rong Xu
d2acd4c4e2 Recommit r354930 "[PGO] Context sensitive PGO (part 1)"
Fixed UBSan failures.

llvm-svn: 355005
2019-02-27 17:24:33 +00:00
Vlad Tsyrklevich
3def5ac311 Revert "[PGO] Context sensitive PGO (part 1)"
This reverts commit r354930, it was causing UBSan failures.

llvm-svn: 354953
2019-02-27 03:45:28 +00:00
Rong Xu
a0b71feeed [PGO] Context sensitive PGO (part 1)
Current PGO profile counts are not context sensitive. The branch probabilities
for the inlined functions are kept the same for all call-sites, and they might
be very different from the actual branch probabilities. These suboptimal
profiles can greatly affect some downstream optimizations, in particular for
the machine basic block placement optimization.

In this patch, we propose to have a post-inline PGO instrumentation/use pass,
which we called Context Sensitive PGO (CSPGO). For the users who want the best
possible performance, they can perform a second round of PGO instrument/use on
the top of the regular PGO. They will have two sets of profile counts. The
first pass profile will be manly for inline, indirect-call promotion, and
CGSCC simplification pass optimizations. The second pass profile is for
post-inline optimizations and code-gen optimizations.

A typical usage:
// Regular PGO instrumentation and generate pass1 profile.
> clang -O2 -fprofile-generate source.c -o gen
> ./gen
> llvm-profdata merge default.*profraw -o pass1.profdata
// CSPGO instrumentation.
> clang -O2 -fprofile-use=pass1.profdata -fcs-profile-generate -o gen2
> ./gen2
// Merge two sets of profiles
> llvm-profdata merge default.*profraw pass1.profdata -o profile.profdata
// Use the combined profile. Pass manager will invoke two PGO use passes.
> clang -O2 -fprofile-use=profile.profdata -o use

This change touches many components in the compiler. The reviewed patch
(D54175) will committed in phrases.

Differential Revision: https://reviews.llvm.org/D54175

llvm-svn: 354930
2019-02-26 22:37:46 +00:00
Chandler Carruth
ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
George Burgess IV
654eb909d7 [Analysis] s/uint64_t/LocationSize; NFC
Let the gradual cleanup from D44748 continue. :)

llvm-svn: 350007
2018-12-22 17:42:08 +00:00
Michael Kruse
f48207fec4 [Unroll/UnrollAndJam/Vectorizer/Distribute] Add followup loop attributes.
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.

    #pragma clang loop unroll_and_jam(enable)
    #pragma clang loop distribute(enable)

is the same as

    #pragma clang loop distribute(enable)
    #pragma clang loop unroll_and_jam(enable)

and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.

This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,

    !0 = !{!0, !1, !2}
    !1 = !{!"llvm.loop.unroll_and_jam.enable"}
    !2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
    !3 = !{!"llvm.loop.distribute.enable"}

defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.

Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.

For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.

Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.

To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.

With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).

Reviewed By: hfinkel, dmgreen

Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288

llvm-svn: 348944
2018-12-12 17:32:52 +00:00
Mikael Holmen
177d678846 [PM] Port Scalarizer to the new pass manager.
Patch by: markus (Markus Lavin)

Reviewers: chandlerc, fedor.sergeev

Reviewed By: fedor.sergeev

Subscribers: llvm-commits, Ka-Ka, bjope

Differential Revision: https://reviews.llvm.org/D54695

llvm-svn: 347392
2018-11-21 14:00:17 +00:00
Hiroshi Yamauchi
a56dc5d07f [PGO] Control Height Reduction
Summary:
Control height reduction merges conditional blocks of code and reduces the
number of conditional branches in the hot path based on profiles.

if (hot_cond1) { // Likely true.
  do_stg_hot1();
}
if (hot_cond2) { // Likely true.
  do_stg_hot2();
}

->

if (hot_cond1 && hot_cond2) { // Hot path.
  do_stg_hot1();
  do_stg_hot2();
} else { // Cold path.
  if (hot_cond1) {
    do_stg_hot1();
  }
  if (hot_cond2) {
    do_stg_hot2();
  }
}

This speeds up some internal benchmarks up to ~30%.

Reviewers: davidxl

Reviewed By: davidxl

Subscribers: xbolva00, dmgreen, mehdi_amini, llvm-commits, mgorny

Differential Revision: https://reviews.llvm.org/D50591

llvm-svn: 341386
2018-09-04 17:19:13 +00:00
Nicolai Haehnle
5a64e70379 [NFC] Rename the DivergenceAnalysis to LegacyDivergenceAnalysis
Summary:
This is patch 1 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).

The purpose of this patch is to free up the name DivergenceAnalysis for the new generic
implementation. The generic implementation class will be shared by specialized
divergence analysis classes.

Patch by: Simon Moll

Reviewed By: nhaehnle

Subscribers: jvesely, jholewinski, arsenm, nhaehnle, mgorny, jfb, llvm-commits

Differential Revision: https://reviews.llvm.org/D50434

Change-Id: Ie8146b11be2c50d5312f30e11c7a3036a15b48cb
llvm-svn: 341071
2018-08-30 14:21:36 +00:00
David Green
3248675f42 [UnrollAndJam] New Unroll and Jam pass
This is a simple implementation of the unroll-and-jam classical loop
optimisation.

The basic idea is that we take an outer loop of the form:

  for i..
    ForeBlocks(i)
    for j..
      SubLoopBlocks(i, j)
    AftBlocks(i)

Instead of doing normal inner or outer unrolling, we unroll as follows:

  for i... i+=2
    ForeBlocks(i)
    ForeBlocks(i+1)
    for j..
      SubLoopBlocks(i, j)
      SubLoopBlocks(i+1, j)
    AftBlocks(i)
    AftBlocks(i+1)
  Remainder Loop

So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now jammed loops.

To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).

Differential Revision: https://reviews.llvm.org/D41953

llvm-svn: 336062
2018-07-01 12:47:30 +00:00
Chandler Carruth
52e567e87f [instsimplify] Move the instsimplify pass to use more obvious file names
and diretory.

Also cleans up all the associated naming to be consistent and removes
the public access to the pass ID which was unused in LLVM.

Also runs clang-format over parts that changed, which generally cleans
up a bunch of formatting.

This is in preparation for doing some internal cleanups to the pass.

Differential Revision: https://reviews.llvm.org/D47352

llvm-svn: 336028
2018-06-29 23:36:03 +00:00
Chandler Carruth
26c36dc78d Revert r335306 (and r335314) - the Call Graph Profile pass.
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.

llvm-svn: 335320
2018-06-22 05:33:57 +00:00
Michael J. Spencer
9f6a23f8c6 [Instrumentation] Add Call Graph Profile pass
This patch adds support for generating a call graph profile from Branch Frequency Info.

The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.

After scanning all the functions, it generates an appending module flag containing the data. The format looks like:

!llvm.module.flags = !{!0}

!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}

Differential Revision: https://reviews.llvm.org/D48105

llvm-svn: 335306
2018-06-21 23:31:10 +00:00
David Green
b30bc64322 Revert 333358 as it's failing on some builders.
I'm guessing the tests reply on the ARM backend being built.

llvm-svn: 333359
2018-05-27 12:54:33 +00:00
David Green
f772da6436 [UnrollAndJam] Add a new Unroll and Jam pass
This is a simple implementation of the unroll-and-jam classical loop
optimisation.

The basic idea is that we take an outer loop of the form:

for i..
  ForeBlocks(i)
  for j..
    SubLoopBlocks(i, j)
  AftBlocks(i)

Instead of doing normal inner or outer unrolling, we unroll as follows:

for i... i+=2
  ForeBlocks(i)
  ForeBlocks(i+1)
  for j..
    SubLoopBlocks(i, j)
    SubLoopBlocks(i+1, j)
  AftBlocks(i)
  AftBlocks(i+1)
Remainder

So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now-jammed loops.

To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).

Differential Revision: https://reviews.llvm.org/D41953

llvm-svn: 333358
2018-05-27 12:11:21 +00:00