The original motivation for this was to implement moreElementsVector of shuffles
on AArch64, which resulted in complex sequences of artifacts like unmerge(unmerge(concat...))
which the combiner couldn't handle. It seemed here that the better option,
instead of writing ever-more-complex combines, was to have a way to find
the original "non-artifact" source registers for a given definition, walking
through arbitrary expressions of unmerge/concat/insert. As long as the bits
aren't extended or truncated, this is a pretty simple algorithm that avoids
the need for lots of combines and instead jumps straight to the final result
we want.
I've only used this new technique in 2 places within tryCombineUnmerge, using it
in more general situations resulted in infinite loops in AMDGPU. So for now
it's used when we would otherwise fail to combine and that seems to work.
In order to support looking through G_INSERTs, I also had to add it as an
artifact in isArtifact(), which caused a whole lot of issues in tests. AMDGPU
started infinite looping since full legalization of G_INSERT doensn't seem to
be there. To work around this, I've temporarily added a CLI option to use the
old behaviour so that the MIR tests will still run and terminate.
Other minor changes include no longer making >128b G_MERGE/UNMERGE legal.
We never had isel support for that anyway and it was a remnant of the legacy
legalizer rules. However being legal prevented the combiner from checking if it
was dead and deleting them.
Differential Revision: https://reviews.llvm.org/D104355
Renames CommonOrcRuntimeTypes.h to ExecutorAddress.h and moves ExecutorAddress
into the 'orc' namespace (rather than orc::shared).
Also makes ExecutorAddress a class, adds an ExecutorAddrDiff type and some
arithmetic operations on the pair (subtracting two addresses yields an addrdiff,
adding an addrdiff and an address yields an address).
Replace the clang builtin function and LLVM intrinsic previously used to select
the f64x2.promote_low_f32x4 instruction with custom combines from standard
SelectionDAG nodes. Implement the new combines to share code with the similar
combines for f64x2.convert_low_i32x4_{s,u}. Resolves PR50232.
Differential Revision: https://reviews.llvm.org/D105675
A followup to the feature added in
69da27c7496ea373567ce5121e6fe8613846e7a5 that added the optional "start
file name" to match "start line" - but this didn't work with Split DWARF
because of the need for the decl file number resolution code to refer
back to the skeleton unit to find its .debug_line contribution. So this
patch adds the necessary infrastructure to track the skeleton unit
corresponding to a split full unit for the purpose of this lookup.
This to protect against non-sensical instruction sequences being assembled,
which would either cause asserts/crashes further down, or a Wasm module being output that doesn't validate.
Unlike a validator, this type checker is able to give type-errors as part of the parsing process, which makes the assembler much friendlier to be used by humans writing manual input.
Because the MC system is single pass (instructions aren't even stored in MC format, they are directly output) the type checker has to be single pass as well, which means that from now on .globaltype and .functype decls must come before their use. An extra pass is added to Codegen to collect information for this purpose, since AsmPrinter is normally single pass / streaming as well, and would otherwise generate this information on the fly.
A `-no-type-check` flag was added to llvm-mc (and any other tools that take asm input) that surpresses type errors, as a quick escape hatch for tests that were not intended to be type correct.
This is a first version of the type checker that ignores control flow, i.e. it checks that types are correct along the linear path, but not the branch path. This will still catch most errors. Branch checking could be added in the future.
Differential Revision: https://reviews.llvm.org/D104945
In order to mirror the GetElementPtrInst::indices() API.
Wanted to use this in the IRForTarget code, and was surprised to
find that it didn't exist yet.
Reapply after fixing another occurrence in lldb that was relying
on this in the preceding commit.
-----
GetElementPtrInst::Create() (and IRBuilder methods based on it)
currently accept nullptr as the element type, and will fetch the
element type from the pointer in that case. Remove this fallback,
as it is incompatible with opaque pointers. I've removed a handful
of leftover calls using this behavior as a preliminary step.
Out-of-tree code affected by this change should either pass a proper
type, or can temporarily explicitly call getPointerElementType(),
if the newly added assertion is encountered.
Differential Revision: https://reviews.llvm.org/D105653
Reapply with fixes for clang tests.
-----
This is a simple enum attribute. Test changes are because enum
attributes are sorted before type attributes, so mustprogress is
now in a different position.
This change is intended as initial setup. The plan is to add
more semantic checks later. I plan to update the documentation
as more semantic checks are added (instead of documenting the
details up front). Most of the code closely mirrors that for
the Swift calling convention. Three places are marked as
[FIXME: swiftasynccc]; those will be addressed once the
corresponding convention is introduced in LLVM.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D95561
This reverts commit 84ed3a794b4ffe7bd673f1e5a17d507aa3113d12.
A number of clang tests are also affected by this change. Revert
until I can update them.
While working on the elementtype attribute, I felt that the type
attribute handling in AttrBuilder is overly repetitive. This patch
converts the separate Type* members into an std::array<Type*>, so
that all type attribute kinds can be handled generically.
There's more room for improvement here (especially when it comes to
converting the AttrBuilder to an Attribute), but this seems like a
good starting point.
Differential Revision: https://reviews.llvm.org/D105658
GetElementPtrInst::Create() (and IRBuilder methods based on it)
currently accept nullptr as the element type, and will fetch the
element type from the pointer in that case. Remove this fallback,
as it is incompatible with opaque pointers. I've removed a handful
of leftover calls using this behavior as a preliminary step.
Out-of-tree code affected by this change should either pass a proper
type, or can temporarily explicitly call getPointerElementType(),
if the newly added assertion is encountered.
Differential Revision: https://reviews.llvm.org/D105653
Currently InstructionSimplify.cpp knows how to simplify floating point
instructions that have a NaN operand. It does not know how to handle the
matching constrained FP intrinsic.
This patch teaches it how to simplify so long as the exception handling
is not "fpexcept.strict".
Differential Revision: https://reviews.llvm.org/D103169
Summary:
The bit order of the has_vec and longtbtable bits in the traceback table generated by the XL compiler flipped at some point after v12.1. This is different from the definition is the AIX header debug.h. The change in the XL compiler that caused the deviation from the OS header definition was unintentional. Since both orderings are extant and the XL compiler runtime also expects the ordering defined by the OS, we will correct the output from LLVM to match the defined ordering given by the OS (which is also consistent with the Assembler Language Reference). Mitigation for traceback tables encoded with the wrong ordering is required for either ordering.
Reviewers: XingXue, HubertTong
Differential Revision: https://reviews.llvm.org/D105487
We keep a record of substitutions between debug value numbers post-isel,
however we never actually look them up until the end of compilation. As a
result, there's nothing gained by the collection being a std::map. This
patch downgrades it to being a vector, that's then sorted at the end of
compilation in LiveDebugValues.
Differential Revision: https://reviews.llvm.org/D105029
This reverts commit 5b350183cdabd83573bc760ddf513f3e1d991bcb (and
also "[NFC][ScalarEvolution] Cleanup howManyLessThans.",
009436e9c1fee1290d62bc0faafe0c0295542f56, to make it apply).
See https://reviews.llvm.org/D105216 for discussion on various
miscompilations caused by that commit.
This patch removes the IsPairwiseForm flag from the Reduction Cost TTI
hooks, along with some accompanying code for pattern matching reductions
from trees starting at extract elements. IsPairWise is now assumed to be
false, which was the predominant way that the value was used from both
the Loop and SLP vectorizers. Since the adjustments such as D93860, the
SLP vectorizer has not relied upon this distinction between paiwise and
non-pairwise reductions.
This also removes some code that was detecting reductions trees starting
from extract elements inside the costmodel. This case was
double-counting costs though, adding the individual costs on the
individual instruction _and_ the total cost of the reduction. Removing
it changes the costs in llvm/test/Analysis/CostModel/X86/reduction.ll to
not double count. The cost of reduction intrinsics is still tested
through the various tests in
llvm/test/Analysis/CostModel/X86/reduce-xyz.ll.
Differential Revision: https://reviews.llvm.org/D105484
This reverts commit e2d30846327c7ec5cc9d2a46aa9bcd9c2c4eff93.
MSVC doesn't seem to resolve the intended ambiguity in implicit
conversion contexts correctly: https://godbolt.org/z/ee16aqv4v
See bug for full details, but basically there's an upcoming ambiguity in
the conversion in `StringRef(SomeSmallString)` - either the implicit
conversion operator (SmallString::operator StringRef) could be used, or
the std::string_view range-based ctor (& then `StringRef(std::string_view)`
would be used)
To address this, make such a conversion invalid up-front - most uses are
more tersely written as `SomeSmallString.str()` anyway, or more clearly
written as `StringRef x = y;` rather than `StringRef x(y);` - so if you
hit this in out-of-tree code, please update in one of those ways.
Hopefully I've fixed everything in tree prior to this patch landing.
SelectionDAG's equivalents in ISD::InputArg/OutputArg track the
original argument index. Mips relies on this, and its currently
reinventing its own parallel CallLowering infrastructure which tracks
these indexes on the side. Add this to help move towards deleting the
custom mips handling.
There are two issues with the current implementation of computeBECount:
1. It doesn't account for the possibility that adding "Stride - 1" to
Delta might overflow. For almost all loops, it doesn't, but it's not
actually proven anywhere.
2. It doesn't account for the possibility that Stride is zero. If Delta
is zero, the backedge is never taken; the value of Stride isn't
relevant. To handle this, we have to make sure that the expression
returned by computeBECount evaluates to zero.
To deal with this, add two new checks:
1. Use a variety of tricks to try to prove that the addition doesn't
overflow. If the proof is impossible, use an alternate sequence which
never overflows.
2. Use umax(Stride, 1) to handle the possibility that Stride is zero.
Differential Revision: https://reviews.llvm.org/D105216
As pointed out in post-commit review on rG8e22539067d9, it's
necessary to call getScalarType() to support GEPs with a vector
base. Dropping that call was an oversight on my side.
This adds a new llvm::thread class with the same interface as std::thread
except there is an extra constructor that allows us to set the new thread's
stack size. On Darwin even the default size is boosted to 8MB to match the main
thread.
It also switches all users of the older C-style `llvm_execute_on_thread` API
family over to `llvm::thread` followed by either a `detach` or `join` call and
removes the old API.
Moved definition of DefaultStackSize into the .cpp file to hopefully
fix the build on some (GCC-6?) machines.
This adds a new llvm::thread class with the same interface as std::thread
except there is an extra constructor that allows us to set the new thread's
stack size. On Darwin even the default size is boosted to 8MB to match the main
thread.
It also switches all users of the older C-style `llvm_execute_on_thread` API
family over to `llvm::thread` followed by either a `detach` or `join` call and
removes the old API.
Several subclasses of User override operator new without also overriding
operator delete. This means that delete expressions fall back to using
operator delete of the base class, which would be User. However, this is
only allowed if the base class has a virtual destructor which is not the
case for User, so this is UB.
See also [expr.delete] (3) for the exact wording.
This is actually detected in some cases by GCC 11's
-Wmismatched-new-delete now which is how I found this error.
Differential Revision: https://reviews.llvm.org/D103143
ExecutorAddressRange depended on JITTargetAddress, but JITTargetAddress is
defined in ExecutionEngine, which OrcShared should not depend on.
This seems like as good a time as any to introduce a new ExecutorAddress type
to eventually replace JITTargetAddress. For now it's just another uint64_t
alias, but it will soon be changed to a class type to provide greater type
safety.
The computeNamedSymbolDependencies and computeLocalDeps methods on
ObjectLinkingLayerJITLinkContext are responsible for computing, for each symbol
in the current MaterializationResponsibility, the set of non-locally-scoped
symbols that are depended on. To calculate this we have to consider the effect
of chains of dependence through locally scoped symbols in the LinkGraph. E.g.
.text
.globl foo
foo:
callq bar ## foo depneds on external 'bar'
movq Ltmp1(%rip), %rcx ## foo depends on locally scoped 'Ltmp1'
addl (%rcx), %eax
retq
.data
Ltmp1:
.quad x ## Ltmp1 depends on external 'x'
In this example symbol 'foo' depends directly on 'bar', and indirectly on 'x'
via 'Ltmp1', which is locally scoped.
Performance of the existing implementations appears to have been mediocre:
Based on flame graphs posted by @drmeister (in #jit on the LLVM discord server)
the computeLocalDeps function was taking up a substantial amount of time when
starting up Clasp (https://github.com/clasp-developers/clasp).
This commit attempts to address the performance problems in three ways:
1. Using jitlink::Blocks instead of jitlink::Symbols as the nodes of the
dependencies-introduced-by-locally-scoped-symbols graph.
Using either Blocks or Symbols as nodes provides the same information, but since
there may be more than one locally scoped symbol per block the block-based
version of the dependence graph should always be a subgraph of the Symbol-based
version, and so faster to operate on.
2. Improved worklist management.
The older version of computeLocalDeps used a fixed worklist containing all
nodes, and iterated over this list propagating dependencies until no further
changes were required. The worklist was not sorted into a useful order before
the loop started.
The new version uses a variable work-stack, visiting nodes in DFS order and
only adding nodes when there is meaningful work to do on them.
Compared to the old version the new version avoids revisiting nodes which
haven't changed, and I suspect it converges more quickly (due to the DFS
ordering).
3. Laziness and caching.
Mappings of...
jitlink::Symbol* -> Interned Name (as SymbolStringPtr)
jitlink::Block* -> Immediate dependencies (as SymbolNameSet)
jitlink::Block* -> Transitive dependencies (as SymbolNameSet)
are all built lazily and cached while running computeNamedSymbolDependencies.
According to @drmeister these changes reduced Clasp startup time in his test
setup (averaged over a handful of starts) from 4.8 to 2.8 seconds (with
ORC/JITLink linking ~11,000 object files in that time), which seems like
enough to justify switching to the new algorithm in the absence of any other
perf numbers.
MachOJITDylibInitializers::SectionExtent represented the address range of a
section as an (address, size) pair. The new ExecutorAddressRange type
generalizes this to an address range (for any object, not necessarily a section)
represented as a (start-address, end-address) pair.
The aim is to express more of ORC (and the ORC runtime) in terms of simple types
that can be serialized/deserialized via SPS. This will simplify SPS-based RPC
involving arguments/return-values of these types.
These currently always require a type parameter. The bitcode reader
already upgrades old bitcode without the type parameter to use the
pointee type.
In cases where the caller does not have byval but the callee does, we
need to follow CallBase::paramHasAttr() and also look at the callee for
the byval type so that CallBase::isByValArgument() and
CallBase::getParamByValType() are in sync. Do the same for preallocated.
While we're here add a corresponding version for inalloca since we'll
need it soon.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D104663
The Legalizer expands the operations of urem/srem into a div+mul+sub or divrem
when those are legal/custom. This patch changes the cost-model to reflect that
cost.
Since there is no 'divrem' Instruction in LLVM IR, the cost of divrem
is assumed to be the same as div+mul+sub since the three operations will
need to be executed at runtime regardless.
Patch co-authored by David Sherwood (@david-arm)
Reviewed By: RKSimon, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D103799
Before we replaced value by registering all their uses. However, as we
replace a value old uses become stale. We now replace values explicitly
and keep track of "new values" when doing so to avoid replacing only
uses in stale/old values but not their replacements.
We often need to deal with the value lattice that contains none and
undef as special values. A simple helper makes this much nicer.
Differential Revision: https://reviews.llvm.org/D103857
When we do simplification via AAPotentialValues or AAValueConstantRange
we need to simplify the operands of an instruction we deconstruct first.
This does not only improve the result, see for example range.ll, but is
required as we allow outside AAs to provide simplification rules via
callbacks. If we do ignore the simplification rules and base other
simplifications on the IR instead we can create an inconsistent state.
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.
There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.
The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.
As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base. This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.
This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes). The resulting changes
seem okay to me, but suggestions welcome. As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.
I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.
Recommitting with fix to MemoryDepChecker::isDependent.
Differential Revision: https://reviews.llvm.org/D104806
As part of making ScalarEvolution's handling of pointers consistent, we
want to forbid multiplying a pointer by -1 (or any other value). This
means we can't blindly subtract pointers.
There are a few ways we could deal with this:
1. We could completely forbid subtracting pointers in getMinusSCEV()
2. We could forbid subracting pointers with different pointer bases
(this patch).
3. We could try to ptrtoint pointer operands.
The option in this patch is more friendly to non-integral pointers: code
that works with normal pointers will also work with non-integral
pointers. And it seems like there are very few places that actually
benefit from the third option.
As a minimal patch, the ScalarEvolution implementation of getMinusSCEV
still ends up subtracting pointers if they have the same base. This
should eliminate the shared pointer base, but eventually we'll need to
rewrite it to avoid negating the pointer base. I plan to do this as a
separate step to allow measuring the compile-time impact.
This doesn't cause obvious functional changes in most cases; the one
case that is significantly affected is ICmpZero handling in LSR (which
is the source of almost all the test changes). The resulting changes
seem okay to me, but suggestions welcome. As an alternative, I tried
explicitly ptrtoint'ing the operands, but the result doesn't seem
obviously better.
I deleted the test lsr-undef-in-binop.ll becuase I couldn't figure out
how to repair it to test what it was actually trying to test.
Differential Revision: https://reviews.llvm.org/D104806