integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
- This matches llvm-ld.
It took a bit of archeology to figure out what the right thing to do was
(whether this was intentionally added or intentionally removed). My final
conclusion is that Chris added this intentionally here:
http://llvm.org/viewvc/llvm-project?view=rev&revision=16913
but the changes weren't propogated to llvm-ld until here:
http://llvm.org/viewvc/llvm-project?view=rev&revision=34058
which was after lto.cpp had been cloned off (of llvm-ld), here:
http://llvm.org/viewvc/llvm-project?view=rev&revision=29494
From the commit message, it looks like the motivation for running global opt
again is because we ran it prior to inlining. Based on that I updated the
comment and also only run the pass if we actually ran the inliner.
Chris, please review.
llvm-svn: 72811
without one. Use it where we were using abs on
int64_t objects.
(I strongly suspect the casts to unsigned in the
fragments in LoopStrengthReduce are not doing whatever
the original intent was, but the obvious change to
uint64_t doesn't work. Maybe later.)
llvm-svn: 71612
the comparison operators were not only unnecessary in the presence of the
implicit conversion; they caused ambiguous overload errors. So I deleted them.
llvm-svn: 70243
- Particularly nice for small constant strings, which get optimized
down nicely. On a synthetic benchmark writing out "hello" in a
loop, this is about 2x faster with gcc and 3x faster with
llvm-gcc. llc on insn-attrtab.bc from 403.gcc is about .5% faster.
- I tried for a fancier solution which wouldn't increase code size as
much (by trying to match constant arrays), but can't quite make it
fly.
llvm-svn: 68396
which are effectively smart pointers to Value*'s. They are both very light
weight and simple, and react to values being destroyed or being RAUW'd.
WeakVN does a best effort to follow a value around, including through RAUW
operations and will get nulled out of the value is destroyed. This is useful
for the eventual "metadata that references a value" work, because it is a
reference to a value that does not show up on its use_* list.
AssertingVH is a pointer that compiles down to a dumb raw pointer when
assertions are disabled. When enabled, it emits an assertion if the
pointed-to value is destroyed while it is still being referenced. This
is very useful for Maps and other things, and should have caught the recent
bugs in CallGraph and Reassociate, for example.
llvm-svn: 68149
function with a new NumLowBitsAvailable enum, which makes the
value available as an integer constant expression.
Add PointerLikeTypeTraits specializations for Instruction* and
Use** since they are only guaranteed 4-byte aligned.
Enhance PointerIntPair to know about (and enforce) the alignment
specified by PointerLikeTypeTraits. This should allow things
like PointerIntPair<PointerIntPair<void*, 1,bool>, 1, bool>
because the inner one knows that 2 low bits are free.
llvm-svn: 67979