be killed before being redefined.
These checks are usually disabled, and usually fail when enabled. We de facto
allow live registers to be redefined without a kill, the corresponding
assertions in RegScavenger were removed long ago.
llvm-svn: 110362
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
llvm-svn: 107205
representation. This eliminates the 'DILocation' MDNodes for
file/line/col tuples from -O0 -g codegen.
This remove the old DebugLoc class, making it a typedef for DebugLoc,
I'll rename NewDebugLoc next.
I didn't update the JIT to use the new apis, so it will continue to
work, but be as slow as before. Someone should eventually do this
or, better yet, rip out the JIT debug info stuff and build the JIT
on top of MC.
llvm-svn: 100209
and passing off ownership to AsmPrinter. Now MachineModuleInfo
creates it and owns it by value. This allows us to use MCSymbols
more consistently throughout the rest of the code generator, and
simplifies a bit of code. This also allows MachineFunction to
keep an MCContext reference handy, and cleans up the TargetRegistry
interfaces for AsmPrinters.
llvm-svn: 98450
which is more convenient, and change getPICJumpTableRelocBaseExpr
to take a MachineFunction to match.
Next, move the X86 code that create a PICBase symbol to
X86TargetLowering::getPICBaseSymbol from
X86MCInstLower::GetPICBaseSymbol, which was an asmprinter specific
library. This eliminates a 'gross hack', and allows us to
implement X86ISelLowering::getPICJumpTableRelocBaseExpr which now
calls it.
This in turn allows us to eliminate the
X86AsmPrinter::printPICJumpTableSetLabel method, which was the
only overload of printPICJumpTableSetLabel.
llvm-svn: 94526
MachineFunctionAnalysis dole them out, instead of having
AsmPrinter do both. Have the AsmPrinter::SetupMachineFunction
method set the 'AsmPrinter::MF' variable.
llvm-svn: 94509
1. MachineJumpTableInfo is now created lazily for a function the first time
it actually makes a jump table instead of for every function.
2. The encoding of jump table entries is now described by the
MachineJumpTableInfo::JTEntryKind enum. This enum is determined by the
TLI::getJumpTableEncoding() hook, instead of by lots of code scattered
throughout the compiler that "knows" that jump table entries are always
32-bits in pic mode (for example).
3. The size and alignment of jump table entries is now calculated based on
their kind, instead of at machinefunction creation time.
Future work includes using the EntryKind in more places in the compiler,
eliminating other logic that "knows" the layout of jump tables in various
situations.
llvm-svn: 94470
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
This time there is no additional include of llvm/Config/config.h
at all. Instead I use a hard-coded preprecessor symbol:
LLVM_COMPACTIFY_SENTINELS
(should this work on the self-hosting buildbot, then
cleanups come next)
llvm-svn: 80035
U include/llvm/BasicBlock.h
U include/llvm/ADT/ilist_node.h
U include/llvm/ADT/ilist.h
U include/llvm/CodeGen/SelectionDAG.h
U include/llvm/CodeGen/MachineFunction.h
U include/llvm/CodeGen/MachineBasicBlock.h
U include/llvm/Function.h
Revert r79938. It was causing self-hosting build failures.
llvm-svn: 79960
reduce the size of relevant "ghostly" sentinels
by a pointer.
This attempt now makes the compactification dependent
on the configure variable LLVM_COMPACT_SENTINELS
and should not cause any bootstrap failures for
llvm-gcc any more.
Please note that this is not yet the final version,
and (as settled with Chris) I shall take out the
autofoo/cmake portions in the next days.
This will also lose the assertability on sentinel
dereferencing and operator++, but that seems
an acceptable price to pay for the simplified
build logic.
llvm-svn: 79938
and short. Well, it's kinda short. Definitely nasty and brutish.
The front-end generates the register/unregister calls into the SjLj runtime,
call-site indices and landing pad dispatch. The back end fills in the LSDA
with the call-site information provided by the front end. Catch blocks are
not yet implemented.
Built on Darwin and verified no llvm-core "make check" regressions.
llvm-svn: 78625