`Saver` is a StringSaver, which has a few overloads of `save` that all
ultimately just call `StringRef save(StringRef)`. Just take a StringRef
here instead of building up a std::string to convert it to a StringRef.
llvm-svn: 348650
Previously we would create an lldb::Function object for each function
parsed, but we would not add these to the clang AST. This is a first
step towards getting local variable support working, as we first need an
AST decl so that when we create local variable entries, they have the
proper DeclContext.
Differential Revision: https://reviews.llvm.org/D55384
llvm-svn: 348631
We were overcounting the number of arithmetic operations needed at each level before we reach a legal type. We were using the full vector type for that level, but we are going to split the input vector at that level in half. So the effective arithmetic operation cost at that level is half the width.
So for example on 8i32 on an sse target. Were were calculating the cost of an 8i32 op which is likely 2 for basic integer. Then after the loop we count 2 more v4i32 ops. For a total arith cost of 4. But if you look at the assembly there would only be 3 arithmetic ops.
There are still more bugs in this code that I'm going to work on next. The non pairwise code shouldn't count extract subvectors in the loop. There are no extracts, the types are split in registers. For pairwise we need to use 2 two src permute shuffles.
Differential Revision: https://reviews.llvm.org/D55397
llvm-svn: 348621
DemandedBits and BDCE currently only support scalar integers. This
patch extends them to also handle vector integer operations. In this
case bits are not tracked for individual vector elements, instead a
bit is demanded if it is demanded for any of the elements. This matches
the behavior of computeKnownBits in ValueTracking and
SimplifyDemandedBits in InstCombine.
Unlike the previous iteration of this patch, getDemandedBits() can now
again be called on arbirary (sized) instructions, even if they don't
have integer or vector of integer type. (For vector types the size of the
returned mask will now be the scalar size in bits though.)
The added LoopVectorize test case shows a case which triggered an
assertion failure with the previous attempt, because getDemandedBits()
was called on a pointer-typed instruction.
Differential Revision: https://reviews.llvm.org/D55297
llvm-svn: 348602
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
DemandedBits and BDCE currently only support scalar integers. This
patch extends them to also handle vector integer operations. In this
case bits are not tracked for individual vector elements, instead a
bit is demanded if it is demanded for any of the elements. This matches
the behavior of computeKnownBits in ValueTracking and
SimplifyDemandedBits in InstCombine.
The getDemandedBits() method can now only be called on instructions that
have integer or vector of integer type. Previously it could be called on
any sized instruction (even if it was not particularly useful). The size
of the return value is now always the scalar size in bits (while
previously it was the type size in bits).
Differential Revision: https://reviews.llvm.org/D55297
llvm-svn: 348549
This reverts commit r348203 and reapplies D55085 with an additional
GCOV bugfix to make the change NFC for relative file paths in .gcno files.
Thanks to Ilya Biryukov for additional testing!
Original commit message:
Update Diagnostic handling for changes in CFE.
The clang frontend no longer emits the current working directory for
DIFiles containing an absolute path in the filename: and will move the
common prefix between current working directory and the file into the
directory: component.
https://reviews.llvm.org/D55085
llvm-svn: 348512
VarStreamArray was built on the assumption that it is backed by a
StreamRef, and offset 0 of that StreamRef is the first byte of the first
record in the array.
This is a logical and intuitive assumption, but unfortunately we have
use cases where it doesn't hold. Specifically, a PDB module's symbol
stream is prefixed by 4 bytes containing a magic value, and the first
byte of record data in the array is actually at offset 4 of this byte
sequence.
Previously, we would just truncate the first 4 bytes and then construct
the VarStreamArray with the resulting StreamRef, so that offset 0 of the
underlying stream did correspond to the first byte of the first record,
but this is problematic, because symbol records reference other symbol
records by the absolute offset including that initial magic 4 bytes. So
if another record wants to refer to the first record in the array, it
would say "the record at offset 4".
This led to extremely confusing hacks and semantics in loading code, and
after spending 30 minutes trying to get some math right and failing, I
decided to fix this in the underlying implementation of VarStreamArray.
Now, we can say that a stream is skewed by a particular amount. This
way, when we access a record by absolute offset, we can use the same
values that the records themselves contain, instead of having to do
fixups.
Differential Revision: https://reviews.llvm.org/D55344
llvm-svn: 348499
These opcodes are intended to subsume some of the capability of G_MERGE_VALUES,
as it was too powerful and thus complex to add deal with throughout the GISel
pipeline.
G_BUILD_VECTOR creates a vector value from a sequence of uniformly typed
scalar values. G_BUILD_VECTOR_TRUNC is a special opcode for handling scalar
operands which are larger than the destination vector element type, and
therefore does an implicit truncate.
G_CONCAT_VECTOR creates a vector by concatenating smaller, uniformly typed,
vectors together.
These will be used in a subsequent commit. This commit just adds the initial
infrastructure.
Differential Revision: https://reviews.llvm.org/D53594
llvm-svn: 348430
More refactoring.
After the changes to the pruning logic, and removing CandidateList, there's
no reason for Candiates to be shared_ptrs (or pointers at all).
std::shared_ptr<Candidate> -> Candidate.
llvm-svn: 348427
Summary:
We decided to change the event section code from 12 to 13 as new
`DataCount` section in the bulk memory operations proposal will take the
code 12 instead.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55343
llvm-svn: 348424
Since we're now performing outlining per OutlinedFunction rather than per
Candidate, we can simply outline each candidate as it shows up.
Instead of having a pruning phase, instead, we'll outline entire functions.
Then we'll update the UnsignedVec we mapped to reflect the deletion. If any
candidate is in a space that's marked dirty, then we'll drop it.
This lets us remove the pruning logic entirely, and greatly simplifies the
code.
llvm-svn: 348420
Mostly NFC, only change is the order of outlined function names.
Loop over the outlined functions instead of walking the candidate list.
This is a bit easier to understand. It's far more natural to create a function,
then replace all of its occurrences with calls than the other way around.
The functions outlined after this do not change, but their names will be
decided by their benefit. E.g, OUTLINED_FUNCTION_0 will now always be the
most beneficial function, rather than the first one seen.
This makes it easier to enforce an ordering on the outlined functions. So,
this also adds a test to make sure that the ordering works as expected.
llvm-svn: 348414
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
Some gardening/refactoring.
It's cleaner to copy the instructions into the MachineFunction using the first
candidate instead of going to the mapper.
Also, by doing this we can remove the Seq member from OutlinedFunction entirely.
llvm-svn: 348390
Revert https://reviews.llvm.org/D55217 due to warnings-turned-into-errors in
AMGPU targets. I'll fix the warnings first, then re-commit this patch.
llvm-svn: 348375
Summary:
Many functions on `llvm::AttributeList` and `llvm::AttributeSet` are
documented with "returns a new {list,set} because attribute
{lists,sets} are immutable." This documentation can be aided by the
addition of an attribute, `LLVM_NODISCARD`. Adding this prevents
unsuspecting users of the API from expecting
`AttributeList::setAttributes` from modifying the underlying list.
At the very least, it would have saved me a few hours of debugging, since I
had been doing just that! I had a bug in my program where I was calling
`setAttributes` but then passing in the unmutated `AttributeList`.
I tried adding LLVM_NODISCARD and confirmed that it would have made my bug
immediately obvious.
Reviewers: rnk, javed.absar
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55217
llvm-svn: 348372
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.
Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.
Differential Revision: https://reviews.llvm.org/D54698
llvm-svn: 348353
Like the already existing zip_shortest/zip_first iterators, zip_longest
iterates over multiple iterators at once, but has as many iterations as
the longest sequence.
This means some iterators may reach the end before others do.
zip_longest uses llvm::Optional's None value to mark a
past-the-end value.
zip_longest is not reverse-iteratable because the tuples iterated over
would be different for different length sequences (IMHO for the same
reason neither zip_shortest nor zip_first should be reverse-iteratable;
one can still reverse the ranges individually if that's the expected
behavior).
In contrast to zip_shortest/zip_first, zip_longest tuples contain
rvalues instead of references. This is because llvm::Optional cannot
contain reference types and the value-initialized default does not have
a memory location a reference could point to.
The motivation for these iterators is to use C++ foreach to compare two
lists of ordered attributes in D48100 (SemaOverload.cpp and
ASTReaderDecl.cpp).
Idea by @hfinkel.
This re-commits r348301 which was reverted by r348303.
The compilation error by gcc 5.4 was resolved using make_tuple in the in
the initializer_list.
The compileration error by msvc14 was resolved by splitting
ZipLongestValueType (which already was a workaround for msvc15) into
ZipLongestItemType and ZipLongestTupleType.
Differential Revision: https://reviews.llvm.org/D48348
llvm-svn: 348323
This is no longer used and is just taking up space in the structure.
Heap allocation of this structure is on the critical path, so space
actually matters.
llvm-svn: 348318
Previously these were dropped. We now understand them sufficiently
well to start emitting them. From the debugger's perspective, this
now enables us to have debug info about typedefs (both global and
function-locally scoped)
Differential Revision: https://reviews.llvm.org/D55228
llvm-svn: 348306
Like the already existing zip_shortest/zip_first iterators, zip_longest
iterates over multiple iterators at once, but has as many iterations as
the longest sequence.
This means some iterators may reach the end before others do.
zip_longest uses llvm::Optional's None value to mark a
past-the-end value.
zip_longest is not reverse-iteratable because the tuples iterated over
would be different for different length sequences (IMHO for the same
reason neither zip_shortest nor zip_first should be reverse-iteratable;
one can still reverse the ranges individually if that's the expected
behavior).
In contrast to zip_shortest/zip_first, zip_longest tuples contain
rvalues instead of references. This is because llvm::Optional cannot
contain reference types and the value-initialized default does not have
a memory location a reference could point to.
The motivation for these iterators is to use C++ foreach to compare two
lists of ordered attributes in D48100 (SemaOverload.cpp and
ASTReaderDecl.cpp).
Idea by @hfinkel.
Differential Revision: https://reviews.llvm.org/D48348
llvm-svn: 348301
Currently if you use -{start,stop}-{before,after}, it picks
the first instance with the matching pass name. If you run
the same pass multiple times, there's no way to distinguish them.
Allow specifying a run index wih ,N to specify which you mean.
llvm-svn: 348285
This reverts commit r348203.
Reason: this produces absolute paths in .gcno files, breaking us
internally as we rely on them being consistent with the filenames passed
in the command line.
Also reverts r348157 and r348155 to account for revert of r348154 in
clang repository.
llvm-svn: 348279
PR17686 demonstrates that for some targets FP exceptions can fire in cases where the FP_TO_UINT is expanded using a FP_TO_SINT instruction.
The existing code converts both the inrange and outofrange cases using FP_TO_SINT and then selects the result, this patch changes this for 'strict' cases to pre-select the FP_TO_SINT input and the offset adjustment.
The X87 cases don't need the strict flag but generates much nicer code with it....
Differential Revision: https://reviews.llvm.org/D53794
llvm-svn: 348251
This patch renames both methods (NotifyObjectEmitted -> notifyObjectLoaded, and
NotifyObjectFreed -> notifyObjectFreed), adds an abstract "ObjectKey" (uint64_t)
parameter to notifyObjectLoaded, and replaces the ObjectFile parameter for
notifyObjectFreed with an ObjectKey. Using an ObjectKey to track identify
events, rather than a reference to the ObjectFile, allows us to free the
ObjectFile after notifyObjectLoaded is called, saving memory.
https://reviews.llvm.org/D53773
llvm-svn: 348223
If a PHI node out of extracted region has multiple incoming values from it,
split this PHI on two parts. First PHI has incomings only from region and
extracts with it (they are placed to the separate basic block that added to the
list of outlined), and incoming values in original PHI are replaced by first
PHI. Similar solution is already used in CodeExtractor for PHIs in entry block
(severSplitPHINodes method). It covers PR39433 bug.
Patch by Sergei Kachkov!
Differential Revision: https://reviews.llvm.org/D55018
llvm-svn: 348205
This allows obtaining smaller, more readable identifiers
in a more comfortable way.
Differential Revision: https://reviews.llvm.org/D54486
llvm-svn: 348197
This flag does not exist in GNU objcopy but has a major use case.
Debugging tools support the .build-id directory structure to find
debug binaries. There is no easy way to build this structure up
however. One way to do it is by using llvm-readelf and some crazy
shell magic. This implements the feature directly. It is most often
the case that you'll want to strip a file and send the original to
the .build-id directory but if you just want to send a file to the
.build-id directory you can copy to /dev/null instead.
Differential Revision: https://reviews.llvm.org/D54384
llvm-svn: 348174
http://lists.llvm.org/pipermail/llvm-dev/2018-September/126472.html
TextAPI is a library and accompanying tool that allows conversion between binary shared object stubs and textual counterparts. The motivations and uses cases for this are explained thoroughly in the llvm-dev proposal [1]. This initial commit proposes a potential structure for the TAPI library, also including support for reading/writing text-based ELF stubs (.tbe) in addition to preliminary support for reading binary ELF files. The goal for this patch is to ensure the project architecture appropriately welcomes integration of Mach-O stubbing from Apple's TAPI [2].
Added:
- TextAPI library
- .tbe read support
- .tbe write (to raw_ostream) support
[1] http://lists.llvm.org/pipermail/llvm-dev/2018-September/126472.html
[2] https://github.com/ributzka/tapi
Differential Revision: https://reviews.llvm.org/D53051
llvm-svn: 348170
The clang frontend no longer emits the current working directory for
DIFiles containing an absolute path in the filename: and will move the
common prefix between current working directory and the file into the
directory: component.
https://reviews.llvm.org/D55085
llvm-svn: 348155