As a part of adding the tiny codemodel, we need to support ldr's with :got:
relocations on them. This seems to be mostly already done, just needs the
relocation type support.
Differential Revision: https://reviews.llvm.org/D50137
llvm-svn: 338673
This method has three callers, each of which wanted distinct handling:
1) Sinking into a loop is moving an instruction known to execute before a loop into the loop. We don't need to worry about introducing a fault at all in this case.
2) Hoisting from a loop into a preheader already duplicated the check in the caller.
3) Sinking from the loop into an exit block was the only true user of the code within the routine. For the moment, this has just been lifted into the caller, but up next is examining the logic more carefully. Whitelisting of loads and calls - while consistent with the previous code - is rather suspicious. Either way, a behavior change is worthy of it's own patch.
llvm-svn: 338671
In expansion of FCOPYSIGN, the shift node is missing when the two
operands of FCOPYSIGN are of the same size. We should always generate
shift node (if the required shift bit is not zero) to put the sign
bit into the right position, regardless of the size of underlying
types.
Differential Revision: https://reviews.llvm.org/D49973
llvm-svn: 338665
Originally, this was part of a larger refactoring I'd planned, but had to abandoned. I figured the minor improvement in readability was worthwhile.
llvm-svn: 338663
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
AArch64 ELF ABI does not define a static relocation type for TLS offset within
a module, which makes it impossible for compiler to generate a valid
DW_AT_location content for thread local variables. Currently LLVM generates an
invalid R_AARCH64_ABS64 relocation at the DW_AT_location field for a TLS
variable. That causes trouble for linker because thread local variable does
not have an absolute address at link time. AArch64 GCC solves the problem by
not generating DW_AT_location for thread local variables. We should do the
same in LLVM.
Differential Revision: https://reviews.llvm.org/D43860
llvm-svn: 338655
Summary:
Mark a variable as maybe-unused to prevent a -Wunused-but-set-variable
warning in optimized builds where asserts are removed.Test/first commit
to check setup and understand patch submission process.
Reviewers: srhines, pirama, dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49756
llvm-svn: 338654
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
The callable flag can be used to indicate that a symbol is callable. If present,
the symbol is callable. If absent, the symbol may or may not be callable (the
client must determine this by context, for example by examining the program
representation that will provide the symbol definition).
This flag will be used in the near future to enable creation of lazy compilation
stubs based on SymbolFlagsMap instances only (without having to provide
additional information to determine which symbols need stubs).
llvm-svn: 338649
This is patch 4 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 4 combines separate DWARFUnitVectors for compile and type units
into a single DWARFUnitVector that contains both. For now the
implementation distinguishes compile units from type units by putting
all compile units at the front of the vector, reflecting the DWARF v4
distinction between .debug_info and .debug_types sections. A future
patch will change this to allow the free mixing of unit kinds, as is
specified by DWARF v5.
Differential Revision: https://reviews.llvm.org/D49744
llvm-svn: 338633
This is patch 3 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 3 simply renames DWARFUnitSection to DWARFUnitVector, as the
object-file section of a unit is nearly irrelevant now.
Differential Revision: https://reviews.llvm.org/D49743
llvm-svn: 338632
This is patch 2 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 2 takes the existing std::deque<DWARFUnitSection> for type units
and makes it a simple DWARFUnitSection, simplifying the handling of
type units and making it more consistent with compile units.
Differential Revision: https://reviews.llvm.org/D49742
llvm-svn: 338629
This is patch 1 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 1 replaces the templated DWARFUnitSection with a non-templated
version. That is, instead of being a SmallVector of pointers to a
specific unit kind, it is not a SmallVector of pointers to the base
class for both type and compile units. Virtual methods are magic.
Differential Revision: https://reviews.llvm.org/D49741
llvm-svn: 338628
Mutate the node type during selection when it
doesn't matter. This avoids an intermediate bitcast
node on targets with legal i16/f16.
Also fixes missing output modifiers on v_cvt_pkrtz_f32_f16,
which I assume are OK.
llvm-svn: 338619
Summary:
Added an option that allows to emit only '.loc' and '.file' kind debug
directives, but disables emission of the DWARF sections. Required for
NVPTX target to support profiling. It requires '.loc' and '.file'
directives, but does not require any DWARF sections for the profiler.
Reviewers: probinson, echristo, dblaikie
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46021
llvm-svn: 338616
It seems like perhaps because cstdio isn't directly included, the
compiler is accidentally picking up wprintf from somewhere else
and trying to call that. Hopefully this fixes it.
llvm-svn: 338614
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
This is useful for understanding how our demangler processes
back references and for investigating issues related to
back references. But it's a feature only useful for debugging
the demangling process itself, so I'm marking it hidden.
llvm-svn: 338609
After we detected the presence of a template via ?$ we would proceed by
only demangling a simple unqualified name. This means we would fail on
templated operators (and perhaps other yet-to-be-determined things)
This was discovered while doing some refactoring to store richer
semantic information about the demangled types to pave the way for
overhauling the way we handle backreferences. (Specifically, we need to
defer recording or resolving back-references until a symbol has been
completely demangled, because we need to use information that only
occurs later in the mangled string to decide whether a back-reference
should be recorded.)
Differential Revision: https://reviews.llvm.org/D50145
llvm-svn: 338608
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
I've put CMPXCHG8B/CMPXCHG16B in the same file, even though technically they are under separate CPUID bits all targets seem to support both (or neither).
llvm-svn: 338595
The bug is visible in the constant-folded x86 tests. We can't use the
negated shift amount when the type is not power-of-2:
https://rise4fun.com/Alive/US1r
...so in that case, use the regular lowering that includes a select
to guard against a shift-by-bitwidth. This path is improved by only
calculating the modulo shift amount once now.
Also, improve the rotate (with power-of-2 size) lowering to use
a negate rather than subtract from bitwidth. This improves the
codegen whether we have a rotate instruction or not (although
we can still see that we're not matching to a legal rotate in
all cases).
llvm-svn: 338592
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).
Differential Revision: https://reviews.llvm.org/D50083
llvm-svn: 338586
This patch just extract code into a separate function to remove some
duplication between the old and new pass manager pipeline. Due to the
different CGSCC iterators used, not all code duplication was eliminated.
llvm-svn: 338585
Summary:
Add support for --rename-section flags from gnu objcopy.
Not all flags appear to have an effect for ELF objects, but allowing them would allow easier drop-in replacement. Other unrecognized flags are rejected.
This was only tested by comparing flags printed by "readelf -e <.o>" against the output of gnu vs llvm objcopy, it hasn't been tested to be valid beyond that.
Reviewers: jakehehrlich, alexshap
Subscribers: llvm-commits, paulsemel, alexshap
Differential Revision: https://reviews.llvm.org/D49870
llvm-svn: 338582
Clang support for the Armv8.2-A FP16 vector intrinsic was committed in
rC328277, but this was never followed up, i.e. the LLVM part is missing.
I've raised PR38404, and this is the first step to address this. I.e.,
this adds tests for the Armv8.2-A FP16 vector intrinsic, and thus shows
which intrinsics already work, and which need further work.
Differential Revision: https://reviews.llvm.org/D50142
llvm-svn: 338568