We can now select CLZ via the TableGen'erated code, so support G_CTLZ
and G_CTLZ_ZERO_UNDEF throughout the pipeline for types <= s32.
Legalizer:
If the CLZ instruction is available, use it for both G_CTLZ and
G_CTLZ_ZERO_UNDEF. Otherwise, use a libcall for G_CTLZ_ZERO_UNDEF and
lower G_CTLZ in terms of it.
In order to achieve this we need to add support to the LegalizerHelper
for the legalization of G_CTLZ_ZERO_UNDEF for s32 as a libcall (__clzsi2).
We also need to allow lowering of G_CTLZ in terms of G_CTLZ_ZERO_UNDEF
if that is supported as a libcall, as opposed to just if it is Legal or
Custom. Due to a minor refactoring of the helper function in charge of
this, we will also allow the same behaviour for G_CTTZ and G_CTPOP.
This is not going to be a problem in practice since we don't yet have
support for treating G_CTTZ and G_CTPOP as libcalls (not even in
DAGISel).
Reg bank select:
Map G_CTLZ to GPR. G_CTLZ_ZERO_UNDEF should not make it to this point.
Instruction select:
Nothing to do.
llvm-svn: 347545
Both zext and sext are currently allowed during the search for narrow
sequences and sexts operands are later added to the mac candidates.
But operands of muls are also added, without checking whether they're
sext or zext, which means we can generate a signed smlad when we
shouldn't.
Differential Revision: https://reviews.llvm.org/D54790
llvm-svn: 347542
This reverts commit r346970.
It was causing PR39774, a crash in slp-vectorizer on a rather simple loop
with just a bunch of 'and's in the body.
llvm-svn: 347541
This reverts commits r347532. Forget add the option
-mtriple powerpc64-unknown-linux-gnu. So other platform is error except
for PowerPC.
llvm-svn: 347534
When splitting the v16f32/v8f64 result type, type legalization will try to promote the integer result type before a concat and an explicit truncate. But for the fptoui test case this is particularly bad since fptoui isn't supported on X86 until AVX512. We could use an fptosi since the result range would fit in a signed 32-bit value, but the generic type legalization doesn't do that transformation when splitting. It does do this when promoting.
llvm-svn: 347533
Summary:
There are 4 instructions which have Inconsistent ImmMustBeMultipleOf in the
function PPCInstrInfo::instrHasImmForm, they are LFS, LFD, STFS, STFD.
These four instructions should set the ImmMustBeMultipleOf to 1 instead of 4.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D54738
llvm-svn: 347532
Summary:
getLastAccessedTime() and getLastModificationTime() provided times in nanoseconds but with only 1 second resolution, even when the underlying file system could provide more precise times than that.
These changes add sub-second precision for unix platforms that support improved precision.
Also add some comments to make sure people are aware that the resolution of times can vary across different file systems.
Reviewers: labath, zturner, aaron.ballman, kristina
Reviewed By: aaron.ballman, kristina
Subscribers: lebedev.ri, mgorny, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D54826
llvm-svn: 347530
This should likely be adjusted to limit this transform
further, but these diffs should be clear wins.
If we have blendv/conditional move, then we should assume
those are cheap ops. The loads become independent of the
compare, so those can be speculated before we need to use
the values in the blend/mov.
llvm-svn: 347526
There are many options here depending on subtarget,
but we are uniformly relying on a transform that was
driven by performance for a 32-bit SSE2 target in 2009.
Note: The same motivation was apparently used to do this
transform for *all* targets, so non-x86 may want to look
at this too.
llvm-svn: 347525
OriginalOp of a Predicate refers to the original IR value,
before renaming. While solving in IPSCCP, we have to use
the operand of the ssa_copy instead, to avoid missing
updates for nested conditions on the same IR value.
Fixes PR39772.
llvm-svn: 347524
rL347502 moved the null sibling, so we should group all of these
together. I'm not sure why these aren't methods of the SDValue
class itself, but that's another patch if that's possible.
llvm-svn: 347523
By default, llvm-mca conservatively assumes that a register operand from the
variadic sequence is both a register read and a register write. That is because
MCInstrDesc doesn't describe extra variadic operands; we don't have enough
dataflow information to tell which register operands from the variadic sequence
is a definition, and which is a use instead.
However, if a variadic instruction is flagged 'mayStore' (but not 'mayLoad'),
and it has no 'unmodeledSideEffects', then llvm-mca (very) optimistically
assumes that any register operand in the variadic sequence is a register read
only. Conversely, if a variadic instruction is marked as 'mayLoad' (but not
'mayStore'), and it has no 'unmodeledSideEffects', then llvm-mca optimistically
assumes that any extra register operand is a register definition only.
These assumptions work quite well for variadic load/store multiple instructions
defined by the ARM backend.
llvm-svn: 347522
Support funnel shifts in InstCombine demanded bits simplification.
If the shift amount is constant, we can determine both the demanded
bits of the operands, as well as the known bits of the result.
If one of the operands has no demanded bits, it will be replaced
by undef and the funnel shift will be simplified into a simple shift
due to the simplifications added in D54778.
Differential Revision: https://reviews.llvm.org/D54869
llvm-svn: 347515
This changeset is modeled after Intel's submission for SVML. It enables
trigonometry functions vectorization via SLEEF: http://sleef.org/.
* A new vectorization library enum is added to TargetLibraryInfo.h: SLEEF.
* A new option is added to TargetLibraryInfoImpl - ClVectorLibrary: SLEEF.
* A comprehensive test case is included in this changeset.
* In a separate changeset (for clang), a new vectorization library argument is
added to -fveclib: -fveclib=SLEEF.
Trigonometry functions that are vectorized by sleef:
acos
asin
atan
atanh
cos
cosh
exp
exp2
exp10
lgamma
log10
log2
log
sin
sinh
sqrt
tan
tanh
tgamma
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D53927
llvm-svn: 347510
The following simplifications are implemented:
* `fshl(X, 0, C) -> shl X, C%BW`
* `fshl(X, undef, C) -> shl X, C%BW` (assuming undef = 0)
* `fshl(0, X, C) -> lshr X, BW-C%BW`
* `fshl(undef, X, C) -> lshr X, BW-C%BW` (assuming undef = 0)
* `fshr(X, 0, C) -> shl X, (BW-C%BW)`
* `fshr(X, undef, C) -> shl X, BW-C%BW` (assuming undef = 0)
* `fshr(0, X, C) -> lshr X, C%BW`
* `fshr(undef, X, C) -> lshr, X, C%BW` (assuming undef = 0)
The simplification is only performed if the shift amount C is constant,
because we can explicitly compute C%BW and BW-C%BW in this case.
Differential Revision: https://reviews.llvm.org/D54778
llvm-svn: 347505
`llvm-mca` relies on the predicates to be based on `MCSchedPredicate` in order
to resolve the scheduling for variant instructions. Otherwise, it aborts
the building of the instruction model early.
However, the scheduling model emitter in `TableGen` gives up too soon, unless
all processors use only such predicates.
In order to allow more processors to be used with `llvm-mca`, this patch
emits scheduling transitions if any processor uses these predicates. The
transition emitted for the processors using legacy predicates is the one
specified with `NoSchedPred`, which is based on `MCSchedPredicate`.
Preferably, `llvm-mca` should instead assume a reasonable default when a
variant transition is not based on `MCSchedPredicate` for a given processor.
This issue should be revisited in the future.
Differential revision: https://reviews.llvm.org/D54648
llvm-svn: 347504
With this change, InstrBuilder emits an error if the MCInst sequence contains an
instruction with a variadic opcode, and a non-zero number of variadic operands.
Currently we don't know how to correctly analyze variadic opcodes. The problem
with variadic operands is that there is no information for them in the opcode
descriptor (i.e. MCInstrDesc). That means, we don't know which variadic operands
are defs, and which are uses.
In future, we could try to conservatively assume that any extra register
operands is both a register use and a register definition.
This patch fixes a subtle bug in the evaluation of read/write operands for ARM
VLD1 with implicit index update. Added test vld1-index-update.s
llvm-svn: 347503
...and use them to avoid creating obviously undef values as
discussed in the post-commit thread for r347478.
The diffs in vector div/rem show that we were missing real
optimizations by creating bogus shift nodes.
llvm-svn: 347502
I'm not sure if this actually preserves the original intent
of this test, but if we leave it as-is, the -1 (oversized)
shift should be folded to undef and allow deleting half
of the output.
llvm-svn: 347501
In ARMOperand::print:
- Print human-readable register names, instead of numbers.
- Print the correct names for IT condition masks (these were in the wrong order
before).
- Print all parts of memory operands, not just the base register.
This makes the output of llvm-mc -show-inst-operands more readable.
Differential revision: https://reviews.llvm.org/D54850
llvm-svn: 347494
RetireControlUnitStatistics now reports extra information about the ROB and the
avg/maximum number of entries consumed over the entire simulation.
Example:
Retire Control Unit - number of cycles where we saw N instructions retired:
[# retired], [# cycles]
0, 109 (17.9%)
1, 102 (16.7%)
2, 399 (65.4%)
Total ROB Entries: 64
Max Used ROB Entries: 35 ( 54.7% )
Average Used ROB Entries per cy: 32 ( 50.0% )
Documentation in llvm/docs/CommandGuide/llvmn-mca.rst has been updated to
reflect this change.
llvm-svn: 347493
I am working on making FileCheck stricter (in D54769 and D53710) so that it
issues diagnostics when there's something wrong with tests.
This is a cleanup for dangling prefixes in the ARM codegen tests, e.g.:
--check-prefixes=A,B
where A occurs in the check file, but B doesn't. This can be innocent if A does
all the required checking, but can also be a bug in that test if it results in
the test actually not checking anything (if A for example only checks a common
label). Test CodeGen/ARM/smml.ll is such an example.
Differential Revision: https://reviews.llvm.org/D54842
llvm-svn: 347487
When removing edges, we also update Phi inputs and may end up removing
a Phi if it has only one input. We should not do it for edges that leave the current
loop because these Phis are LCSSA Phis and need to be preserved.
Thanks @dmgreen for finding this!
Differential Revision: https://reviews.llvm.org/D54841
llvm-svn: 347484
This code takes a truncate, fp_to_int, or int_to_fp with a legal result type and an input type that needs to be split and enlarges the elements in the result type before doing the split. Then inserts a follow up truncate or fp_round after concatenating the two halves back together.
But if the input type of the original op is being split on its way to ultimately being scalarized we're just going to end up building a vector from scalars and then truncating or rounding it in the vector register. Seems kind of silly to enlarge the result element type of the operation only to end up with scalar code and then building a vector with large elements only to make the elements smaller again in the vector register. Seems better to just try to get away producing smaller result types in the scalarized code.
The X86 test case that changes is a pretty contrived test case that exists because of a bug we used to have in our AVG matching code. I think the code is better now, but its not realistic anyway.
llvm-svn: 347482
All of STB_GLOBAL/STB_WEAK/STB_GNU_UNIQUE are treated as export symbols, see:
glibc/elf/dl-lookup.c:do_lookup_x
musl/ldso/dynlink.c OK_BINDS
Though ld.so does not read binding, the currently used STV_DEFAULT or STV_PROTECTED is a good emulation of linker behavior.
llvm-svn: 347481
SplitVecOp_TruncateHelper tries to introduce a multilevel truncate to avoid scalarization. But if splitting the result type would still be a legal type we don't need to do that.
The comment block at the top of the function implied that this was already implemented. I looked back through the history and it doesn't look to have ever been checked.
llvm-svn: 347479
We fail to canonicalize IR this way (prefer 'not' ops to arbitrary 'xor'),
but that would not matter without this patch because DAGCombiner was
reversing that transform. I think we need this transform in the backend
regardless of what happens in IR to catch cases where the shift-xor
is formed late from GEP or other ops.
https://rise4fun.com/Alive/NC1
Name: shl
Pre: (-1 << C2) == C1
%shl = shl i8 %x, C2
%r = xor i8 %shl, C1
=>
%not = xor i8 %x, -1
%r = shl i8 %not, C2
Name: shr
Pre: (-1 u>> C2) == C1
%sh = lshr i8 %x, C2
%r = xor i8 %sh, C1
=>
%not = xor i8 %x, -1
%r = lshr i8 %not, C2
https://bugs.llvm.org/show_bug.cgi?id=39657
llvm-svn: 347478
The test was reverted because it failed on
llvm-clang-x86_64-expensive-checks-win builder, and that was because
-DEXPENSIVE_CHECKS adds randomness to llvm::sort(), affecting the order of
relocation table entries.
Modified the test to not have two relocations at the same offset.
llvm-svn: 347476
Also, try to minimize the number of queries to the memory queues to speedup the
analysis.
On average, this change gives a small 2% speedup. For memcpy-like kernels, the
speedup is up to 5.5%.
llvm-svn: 347469
This avoids a heap allocation most of the times.
This patch gives a small but consistent 3% speedup on a release build (up to ~5%
on a debug build).
llvm-svn: 347464
This patch fixes an invalid memory read introduced by r346487.
Before this patch, partial register write had to query the latency of the
dependent full register write by calling a method on the full write descriptor.
However, if the full write is from an already retired instruction, chances are
that the EntryStage already reclaimed its memory.
In some parial register write tests, valgrind was reporting an invalid
memory read.
This change fixes the invalid memory access problem. Writes are now responsible
for tracking dependent partial register writes, and notify them in the event of
instruction issued.
That means, partial register writes no longer need to query their associated
full write to check when they are ready to execute.
Added test X86/BtVer2/partial-reg-update-7.s
llvm-svn: 347459
A consequence of r347274 is that SCALAR_TO_VECTOR can be converted into
BUILD_VECTOR by SimplifyDemandedBits, but LowerBUILD_VECTOR can turn
BUILD_VECTOR into SCALAR_TO_VECTOR so we get an infinite loop.
Fix this by making LowerBUILD_VECTOR not do this transformation for those
vectors that would get transformed back, i.e. BUILD_VECTOR of a single-element
constant vector. Doing that means we get a DUP, which we then need to recognise
in ISel as a copy.
llvm-svn: 347456
a normal base class that provides all common "call" functionality.
This merges two complex CRTP mixins for the common "call" logic and
common operand bundle logic into a single, normal base class of
`CallInst` and `InvokeInst`. Going forward, users can typically
`dyn_cast<CallBase>` and use the resulting API. No more need for the
`CallSite` wrapper. I'm planning to migrate current usage of the wrapper
to directly use the base class and then it can be removed, but those are
simpler and much more incremental steps. The big change is to introduce
this abstraction into the type system.
I've tried to do some basic simplifications of the APIs that I couldn't
really help but touch as part of this:
- I've tried to organize the attribute API and bundle API into groups to
make understanding the API of `CallBase` easier. Without this,
I wasn't able to navigate the API sanely for all of the ways I needed
to modify it.
- I've added what seem like more clear and consistent APIs for getting
at the called operand. These ended up being especially useful to
consolidate the *numerous* duplicated code paths trying to do this.
- I've largely reworked the organization and implementation of the APIs
for computing the argument operands as they needed to change to work
with the new subclass approach.
To minimize any cost associated with this abstraction, I've moved the
operand layout in memory to store the called operand last. This makes
its position relative to the end of the operand array the same,
regardless of the subclass. It should make it much cheaper to reference
from the `CallBase` abstraction, and this is likely one of the most
frequent things to query.
We do still pay one abstraction penalty here: we have to branch to
determine whether there are 0 or 2 extra operands when computing the end
of the argument operand sequence. However, that seems both rare and
should optimize well. I've implemented this in a way specifically
designed to allow it to optimize fairly well. If this shows up in
profiles, we can add overrides of the relevant methods to the subclasses
that bypass this penalty. It seems very unlikely that this will be an
issue as the code was *already* dealing with an ever present abstraction
of whether or not there are operand bundles, so this isn't the first
branch to go into the computation.
I've tried to remove as much of the obvious vestigial API surface of the
old CRTP implementation as I could, but I suspect there is further
cleanup that should now be possible, especially around the operand
bundle APIs. I'm leaving all of that for future work in this patch as
enough things are changing here as-is.
One thing that made this harder for me to reason about and debug was the
pervasive use of unsigned values in subtraction and other arithmetic
computations. I had to debug more than one unintentional wrap. I've
switched a few of these to use `int` which seems substantially simpler,
but I've held back from doing this more broadly to avoid creating
confusing divergence within a single class's API.
I also worked to remove all of the magic numbers used to index into
operands, putting them behind named constants or putting them into
a single method with a comment and strictly using the method elsewhere.
This was necessary to be able to re-layout the operands as discussed
above.
Thanks to Ben for reviewing this (somewhat large and awkward) patch!
Differential Revision: https://reviews.llvm.org/D54788
llvm-svn: 347452