SplitLandingPadPredecessors is similar to SplitBlockPredecessors in that it
splits the current block and attaches a set of predecessors to the new basic
block. However, it differs from SplitBlockPredecessors in that it's specifically
designed to handle landing pad blocks.
Two new basic blocks are created: one that is has the vector of predecessors as
its predecessors and one that has the remaining predecessors as its
predecessors. Those two new blocks then receive a cloned copy of the landingpad
instruction from the original block. The landingpad instructions are joined in a
PHI, etc. Like SplitBlockPredecessors, it updates the LLVM IR, AliasAnalysis,
DominatorTree, DominanceFrontier, LoopInfo, and LCCSA analyses.
llvm-svn: 138014
This patch adds support of NativeClient (*-*-nacl) OS support to LLVM.
It's already supported in autoconf/config.sub.
The motivation for this change is to start upstreaming PNaCl work. The
whole set of patches include llvm backends (i686, x86_64, ARM),
llvm-gcc (probably, would not be upstreamed because it's deprecated)
and clang (the work has been just started, the amount of changes is
going to be low and the most of the work is expected to be done close
to the mainline).
llvm-svn: 138005
The landingpad instruction is lowered into the EXCEPTIONADDR and EHSELECTION
SDNodes. The information from the landingpad instruction is harvested by the
'AddLandingPadInfo' function. The new EH uses the current EH scheme in the
back-end. This will change once we switch over to the new scheme. (Reviewed by
Jakob!)
llvm-svn: 137880
MDNodes graph structure such that compiler unit keeps track of important MDNodes and update dwarf writer to process mdnodes top-down instead of bottom up.
llvm-svn: 137778
getFirstInsertionPt() returns an iterator to the first insertion point in a
basic block. This is after all PHIs and any other instruction which is required
to be at the top of the basic block (like LandingPadInst).
llvm-svn: 137744
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
llvm-svn: 137675
This caused a race condition where a thread calls ~LLVMContextImpl which calls
Module::dropAllReferences which calls begin() on an empty ilist that would
create the sentinel, which racily accesses the global context.
This can not be fixed by locking inside createSentinel because the lock would
need to be shared with all users of the global context, including those that
reside outside LLVM's own code.
llvm-svn: 137546
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
llvm-svn: 137501
when checking isNull(), we'd pick off the sentinel bit for the outer
PointerUnion, but would not recursively convert the inner pointerunion to bool,
so if *its* sentinel bit is set, isNull() would incorrectly return false.
No testcase, because someone hit this when they were trying to refactor code
to use PointerUnion3, but they since found a better solution.
llvm-svn: 137428
SCEV unrolling can unroll loops with arbitrary induction variables. It
is a prerequisite for -disable-iv-rewrite performance. It is also
easily handles loops of arbitrary structure including multiple exits
and is generally more robust.
This is under a temporary option to avoid affecting default
behavior for the next couple of weeks. It is needed so that I can
checkin unit tests for updateUnloop.
llvm-svn: 137384
An algorithm for incrementally updating LoopInfo within a
LoopPassManager. The incremental update should be extremely cheap in
most cases and can be used in places where it's not feasible to
regenerate the entire loop forest.
- "Unloop" is a node in the loop tree whose last backedge has been removed.
- Perform reverse dataflow on the block inside Unloop to propagate the
nearest loop from the block's successors.
- For reducible CFG, each block in unloop is visited exactly
once. This is because unloop no longer has a backedge and blocks
within subloops don't change parents.
- Immediate subloops are summarized by the nearest loop reachable from
their exits or exits within nested subloops.
- At completion the unloop blocks each have a new parent loop, and
each immediate subloop has a new parent.
llvm-svn: 137276
based on ScalarEvolution without changing the induction variable phis.
This utility is the main tool of IndVarSimplifyPass, but the pass also
restructures induction variables in strange ways that are sensitive to
pass ordering. This provides a way for other loop passes to simplify
new uses of induction variables created during transformation. The
utility may be used by any pass that preserves ScalarEvolution. Soon
LoopUnroll will use it.
The net effect in this checkin is to cleanup the IndVarSimplify pass
by factoring out the SimplifyIndVar algorithm into a standalone utility.
llvm-svn: 137197
These are not individual bug fixes. I had to rewrite a good chunk of
the unroller to make it sane. I think it was getting lucky on trivial
completely unrolled loops with no early exits. I included some fairly
simple unit tests for partial unrolling. I didn't do much stress
testing, so it may not be perfect, but should be usable now.
llvm-svn: 137190
This function doesn't have anything to do with spill weights, and MRI
already has functions for manipulating the register class of a virtual
register.
llvm-svn: 137123
inlined variable, based on the discussion in PR10542.
This explodes the runtime of several passes down the pipeline due to
a large number of "copies" remaining live across a large function. This
only shows up with both debug and opt, but when it does it creates
a many-minute compile when self-hosting LLVM+Clang. There are several
other cases that show these types of regressions.
All of this is tracked in PR10542, and progress is being made on fixing
the issue. Once its addressed, the re-instated, but until then this
restores the performance for self-hosting and other opt+debug builds.
Devang, let me know if this causes any trouble, or impedes fixing it in
any way, and thanks for working on this!
llvm-svn: 136953
LoopPassManager. The incremental update should be extremely cheap in
most cases and can be used in places where it's not feasible to
regenerate the entire loop forest.
- "Unloop" is a node in the loop tree whose last backedge has been removed.
- Perform reverse dataflow on the block inside Unloop to propagate the
nearest loop from the block's successors.
- For reducible CFG, each block in unloop is visited exactly
once. This is because unloop no longer has a backedge and blocks
within subloops don't change parents.
- Immediate subloops are summarized by the nearest loop reachable from
their exits or exits within nested subloops.
- At completion the unloop blocks each have a new parent loop, and
each immediate subloop has a new parent.
llvm-svn: 136844
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589
This flag is true from isel to register allocation when the machine
function is required to be in SSA form. The TwoAddressInstructionPass
and PHIElimination passes clear the flag.
The SSA flag wil be used by the machine code verifier to check for SSA
form, and eventually an assertion can enforce it in +Asserts builds.
This will catch the common target error of creating machine code with
multiple defs of a virtual register.
llvm-svn: 136532
Create a std::string wrapper for use as a DenseMap key. DenseMap is
not safe in generate with strings, so this wrapper indicates that only
strings guaranteed not to have certain values should be used in the
DenseMap.
llvm-svn: 136481
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
llvm-svn: 136457
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
llvm-svn: 136404
of the empty key for U. This shouldn't really matter because the tombstone key
for the pair was still distinct from every other key, but it is odd. Patch by
Michael Ilseman!
llvm-svn: 136336
* InvokeInst: Get the landingpad instruction associated with this invoke.
* LandingPadInst: A method to reserve extra space for clauses.
llvm-svn: 136325