Utilise a similar ('late') lowering strategy to D47882. The changes to
AtomicExpandPass allow this strategy to be utilised by other targets which
implement shouldExpandAtomicCmpXchgInIR.
All cmpxchg are lowered as 'strong' currently and failure ordering is ignored.
This is conservative but correct.
Differential Revision: https://reviews.llvm.org/D48131
llvm-svn: 347914
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
It makes more sense to order FI-based memops in descending order when
the stack goes down. This allows offsets to stay "consecutive" and allow
easier pattern matching.
llvm-svn: 347906
I believe we should be legalizing these with the rest of vector binary operations. If any custom lowering is required for these nodes, this will give the DAG combine between LegalizeVectorOps and LegalizeDAG to run on the custom code before constant build_vectors are lowered in LegalizeDAG.
I've moved MULHU/MULHS handling in AArch64 from Lowering to isel. Moving the lowering earlier caused build_vector+extract_subvector simplifications to kick in which made the generated code worse.
Differential Revision: https://reviews.llvm.org/D54276
llvm-svn: 347902
This is another patch for -x86-experimental-vector-widening. This pre widens narrow division by constants so that we can get pass the legal type check in the generic DAG combiner. Otherwise we end up scalarizing.
I've restricted this to splats for now because it was easy to just call DAG.getConstant. Not sure what we should do for non-splat? Increase the element size?Widen the constant vector by padding with 1?
Differential Revision: https://reviews.llvm.org/D54919
llvm-svn: 347898
This patch adds support for S_ANDN2, S_ORN2 32-bit and 64-bit instructions and adds splits to move them to the vector unit (for which there is no equivalent instruction). It modifies the way that the more complex scalar instructions are lowered to vector instructions by first breaking them down to sequences of simpler scalar instructions which are then lowered through the existing code paths. The pattern for S_XNOR has also been updated to apply inversion to one input rather than the output of the XOR as the result is equivalent and may allow leaving the NOT instruction on the scalar unit.
A new tests for NAND, NOR, ANDN2 and ORN2 have been added, and existing tests now hit the new instructions (and have been modified accordingly).
Differential: https://reviews.llvm.org/D54714
llvm-svn: 347877
My change svn-id: 347871 caused a buildbot failure due to an unused
variable def (used in an assert).
Change-Id: Ia882d18bb6fa79b4d7bbfda422b9ea5d23eab336
llvm-svn: 347876
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
It causes asserts building BoringSSL. See https://crbug.com/91009#c3 for
repro.
This also reverts the follow-ups:
Revert r347724 "Do not insert prefetches with unsupported memory operands."
Revert r347606 "[X86] Add dependency from X86 to ProfileData after rL347596"
Revert r347607 "Add new passes to X86 pipeline tests"
llvm-svn: 347864
Change meaning of TargetOptions::EnableGlobalISel. The flag was
previously set only when a target switched on GlobalISel but it is now
always set when the GlobalISel pipeline is enabled. This makes the flag
consistent with TargetOptions::EnableFastISel and allows its use in
other parts of the compiler to determine when GlobalISel is enabled.
The EnableGlobalISel flag had previouly only one use in
TargetPassConfig::isGlobalISelAbortEnabled(). The method used its value
to determine if GlobalISel was enabled by a target and returned false in
such a case. To preserve the current behaviour, a new flag
TargetOptions::GlobalISelAbort is introduced to separately record the
abort behaviour.
Differential Revision: https://reviews.llvm.org/D54518
llvm-svn: 347861
This patch adds the ability to specify via tablegen which processor resources
are load/store queue resources.
A new tablegen class named MemoryQueue can be optionally used to mark resources
that model load/store queues. Information about the load/store queue is
collected at 'CodeGenSchedule' stage, and analyzed by the 'SubtargetEmitter' to
initialize two new fields in struct MCExtraProcessorInfo named `LoadQueueID` and
`StoreQueueID`. Those two fields are identifiers for buffered resources used to
describe the load queue and the store queue.
Field `BufferSize` is interpreted as the number of entries in the queue, while
the number of units is a throughput indicator (i.e. number of available pickers
for loads/stores).
At construction time, LSUnit in llvm-mca checks for the presence of extra
processor information (i.e. MCExtraProcessorInfo) in the scheduling model. If
that information is available, and fields LoadQueueID and StoreQueueID are set
to a value different than zero (i.e. the invalid processor resource index), then
LSUnit initializes its LoadQueue/StoreQueue based on the BufferSize value
declared by the two processor resources.
With this patch, we more accurately track dynamic dispatch stalls caused by the
lack of LS tokens (i.e. load/store queue full). This is also shown by the
differences in two BdVer2 tests. Stalls that were previously classified as
generic SCHEDULER FULL stalls, are not correctly classified either as "load
queue full" or "store queue full".
About the differences in the -scheduler-stats view: those differences are
expected, because entries in the load/store queue are not released at
instruction issue stage. Instead, those are released at instruction executed
stage. This is the main reason why for the modified tests, the load/store
queues gets full before PdEx is full.
Differential Revision: https://reviews.llvm.org/D54957
llvm-svn: 347857
Summary:
MachineLoopInfo cannot be relied on for correctness, because it cannot
properly recognize loops in irreducible control flow which can be
introduced by late machine basic block optimization passes. See the new
test case for the reduced form of an example that occurred in practice.
Use a simple fixpoint iteration instead.
In order to facilitate this change, refactor WaitcntBrackets so that it
only tracks pending events and registers, rather than also maintaining
state that is relevant for the high-level algorithm. Various accessor
methods can be removed or made private as a consequence.
Affects (in radv):
- dEQP-VK.glsl.loops.special.{for,while}_uniform_iterations.select_iteration_count_{fragment,vertex}
Fixes: r345719 ("AMDGPU: Rewrite SILowerI1Copies to always stay on SALU")
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54231
llvm-svn: 347853
Summary:
There is one obsolete reference to using -1 as an indication of "unknown",
but this isn't actually used anywhere.
Using unsigned makes robust wrapping checks easier.
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, llvm-commits, tpr, t-tye, hakzsam
Differential Revision: https://reviews.llvm.org/D54230
llvm-svn: 347852
Summary:
Instead of storing the "score" (last time point) of the various relevant
events, only store whether an event is pending or not.
This is sufficient, because whenever only one event of a count type is
pending, its last time point is naturally the upper bound of all time
points of this count type, and when multiple event types are pending,
the count type has gone out of order and an s_waitcnt to 0 is required
to clear any pending event type (and will then clear all pending event
types for that count type).
This also removes the special handling of GDS_GPR_LOCK and EXP_GPR_LOCK.
I do not understand what this special handling ever attempted to achieve.
It has existed ever since the original port from an internal code base,
so my best guess is that it solved a problem related to EXEC handling in
that internal code base.
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54228
llvm-svn: 347850
Summary:
It hides the type casting ugliness, and I happened to have to add a new
such loop (in a later patch).
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54227
llvm-svn: 347849
Summary:
Reduce the statefulness of the algorithm in two ways:
1. More clearly split generateWaitcntInstBefore into two phases: the
first one which determines the required wait, if any, without changing
the ScoreBrackets, and the second one which actually inserts the wait
and updates the brackets.
2. Communicate pre-existing s_waitcnt instructions using an argument to
generateWaitcntInstBefore instead of through the ScoreBrackets.
To simplify these changes, a Waitcnt structure is introduced which carries
the counts of an s_waitcnt instruction in decoded form.
There are some functional changes:
1. The FIXME for the VCCZ bug workaround was implemented: we only wait for
SMEM instructions as required instead of waiting on all counters.
2. We now properly track pre-existing waitcnt's in all cases, which leads
to less conservative waitcnts being emitted in some cases.
s_load_dword ...
s_waitcnt lgkmcnt(0) <-- pre-existing wait count
ds_read_b32 v0, ...
ds_read_b32 v1, ...
s_waitcnt lgkmcnt(0) <-- this is too conservative
use(v0)
more code
use(v1)
This increases code size a bit, but the reduced latency should still be a
win in basically all cases. The worst code size regressions in my shader-db
are:
WORST REGRESSIONS - Code Size
Before After Delta Percentage
1724 1736 12 0.70 % shaders/private/f1-2015/1334.shader_test [0]
2276 2284 8 0.35 % shaders/private/f1-2015/1306.shader_test [0]
4632 4640 8 0.17 % shaders/private/ue4_elemental/62.shader_test [0]
2376 2384 8 0.34 % shaders/private/f1-2015/1308.shader_test [0]
3284 3292 8 0.24 % shaders/private/talos_principle/1955.shader_test [0]
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54226
llvm-svn: 347848
Summary:
A signed comparison of i1 values produces the opposite result to an unsigned one if the condition code
includes less-than or greater-than. This is so because 1 is the most negative signed i1 number and the
most positive unsigned i1 number. The CR-logical operations used for such comparisons are non-commutative
so for signed comparisons vs. unsigned ones, the input operands just need to be swapped.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D54825
llvm-svn: 347831
This failed to select (which might be a separate bug) in
X86ISelDAGToDAG because we try to create a select node
that can be simplified away after rL347227.
This change avoids the problem by simplifying the SHRUNKBLEND
node sooner. In the test case, we manage to realize that the
true/false values of the select (SHRUNKBLEND) are the same thing,
so it simplifies away completely.
llvm-svn: 347818
Unlike most cost model functions this code makes a lot of table lookups without using the results from getTypeLegalizationCost. This means 512-bit vectors can be looked up even when the type isn't legal.
This patch adds a check around the two tables that contain 512-bit types to make sure that neither of the types would be split by type legalization. Meaning 512 bit types are illegal. I wanted to write this in a somewhat generic way that uses type legalization query hooks. But if prefered, I can switch to just using is512BitVector and the subtarget feature.
Differential Revision: https://reviews.llvm.org/D54984
llvm-svn: 347786
This fixes some of scalarization costs reported for sext/zext using avx512bw. This does not fix all scalarization costs being reported. Just the worst.
I've restricted this only to combinations of types that are legal with avx512bw like v32i1/v64i1/v32i16/v64i8 and conversions between vXi1 and vXi8/vXi16 with legal vXi8/vXi16 result types.
Differential Revision: https://reviews.llvm.org/D54979
llvm-svn: 347785
Expansion of SIGN_EXTEND_INREG can create a VSRAI instruction. If there is already a VSRAI after it, we should combine them into a larger VSRAI
Differential Revision: https://reviews.llvm.org/D54959
llvm-svn: 347784
This adds support in the RISCVAsmParser the storing of Subtarget feature bits to a stack so that they can be pushed/popped to enable/disable multiple features at once.
Differential Revision: https://reviews.llvm.org/D46424
Patch by Lewis Revill.
llvm-svn: 347774
Before this patch, the following stores in `merge_fail` would fail to be
merged, while they would get merged in `merge_ok`:
```
void use(unsigned long long *);
void merge_fail(unsigned key, unsigned index)
{
unsigned long long args[8];
args[0] = key;
args[1] = index;
use(args);
}
void merge_ok(unsigned long long *dst, unsigned a, unsigned b)
{
dst[0] = a;
dst[1] = b;
}
```
The reason is that `getMemOpBaseImmOfs` would return false for FI base
operands.
This adds support for this.
Differential Revision: https://reviews.llvm.org/D54847
llvm-svn: 347747
Currently, instructions doing memory accesses through a base operand that is
not a register can not be analyzed using `TII::getMemOpBaseRegImmOfs`.
This means that functions such as `TII::shouldClusterMemOps` will bail
out on instructions using an FI as a base instead of a register.
The goal of this patch is to refactor all this to return a base
operand instead of a base register.
Then in a separate patch, I will add FI support to the mem op clustering
in the MachineScheduler.
Differential Revision: https://reviews.llvm.org/D54846
llvm-svn: 347746
This reverts r294500. DwarfCompileUnit::addAddressExpr uses DIEExpr
for PCOffset. In that case the expression is unrelated to thread locals
and so emitting a value of the DIEExpr does not have to always mean
emit-debug-thread-local.
llvm-svn: 347744
CGF/CLGF compares an i64 register with a sign/zero extended loaded i32 value
in memory.
This patch makes such a load considered foldable and so gets a 0 cost.
Review: Ulrich Weigand
https://reviews.llvm.org/D54944
llvm-svn: 347735
AH, SH and MH costs are already covered in the cases where LHS is 32 bits and
RHS is 16 bits of memory sign-extended to i32.
As these instructions are also used when LHS is i16, this patch recognizes
that the loads will get folded then as well.
Review: Ulrich Weigand
https://reviews.llvm.org/D54940
llvm-svn: 347734
Single instructions exist for i8 and i16 comparisons of memory against a
small immediate.
This patch makes sure that if the load in these cases has a single user (the
ICmp), it gets a 0 cost (folded), and also that the ICmp gets a cost of 1.
Review: Ulrich Weigand
https://reviews.llvm.org/D54897
llvm-svn: 347733
Since byte-swapping loads and stores are supported, a 'load -> bswap' or
'bswap -> store' sequence should have the cost of one.
Review: Ulrich Weigand
https://reviews.llvm.org/D54870
llvm-svn: 347732
We're already mixing this APInt with other 'unsigned' variables. This allows us to use regular comparison operators instead of needing to use APInt::ult or APInt::uge. And it removes a later conversion from APInt to unsigned.
I might be adding another combine to this function and this will probably simplify the logic required for that.
llvm-svn: 347684
This is skylake-avx512 with the addition of avx512vnni ISA.
Patch by Jianping Chen
Differential Revision: https://reviews.llvm.org/D54785
llvm-svn: 347681
If we fold the bitcast into the store we'll end up creating a truncating store to vXi1 that will get scalarized. Instead allow the bitcast to be turned into a movmsk.
We probably need to do something if the store itself is a vXi1 type, but I'll leave that til a testcase appears.
llvm-svn: 347632
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, `AArch64InstrInfo::hasExtendedReg()`.
Differential revision: https://reviews.llvm.org/D54822
llvm-svn: 347599
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, `AArch64InstrInfo::hasShiftedReg()`.
Differential revision: https://reviews.llvm.org/D54820
llvm-svn: 347598
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, `AArch64InstrInfo::isScaledAddr()`
Differential revision: https://reviews.llvm.org/D54777
llvm-svn: 347597
Summary:
Support for profile-driven cache prefetching (X86)
This change is part of a larger system, consisting of a cache prefetches recommender, create_llvm_prof (https://github.com/google/autofdo), and LLVM.
A proof of concept recommender is DynamoRIO's cache miss analyzer. It processes memory access traces obtained from a running binary and identifies patterns in cache misses. Based on them, it produces a csv file with recommendations. The expectation is that, by leveraging such recommendations, we can reduce the amount of clock cycles spent waiting for data from memory. A microbenchmark based on the DynamoRIO analyzer is available as a proof of concept: https://goo.gl/6TM2Xp.
The recommender makes prefetch recommendations in terms of:
* the binary offset of an instruction with a memory operand;
* a delta;
* and a type (nta, t0, t1, t2)
meaning: a prefetch of that type should be inserted right before the instrution at that binary offset, and the prefetch should be for an address delta away from the memory address the instruction will access.
For example:
0x400ab2,64,nta
and assuming the instruction at 0x400ab2 is:
movzbl (%rbx,%rdx,1),%edx
means that the recommender determined it would be beneficial for a prefetchnta instruction to be inserted right before this instruction, as such:
prefetchnta 0x40(%rbx,%rdx,1)
movzbl (%rbx, %rdx, 1), %edx
The workflow for prefetch cache instrumentation is as follows (the proof of concept script details these steps as well):
1. build binary, making sure -gmlt -fdebug-info-for-profiling is passed. The latter option will enable the X86DiscriminateMemOps pass, which ensures instructions with memory operands are uniquely identifiable (this causes ~2% size increase in total binary size due to the additional debug information).
2. collect memory traces, run analysis to obtain recommendations (see above-referenced DynamoRIO demo as a proof of concept).
3. use create_llvm_prof to convert recommendations to reference insertion locations in terms of debug info locations.
4. rebuild binary, using the exact same set of arguments used initially, to which -mllvm -prefetch-hints-file=<file> needs to be added, using the afdo file obtained at step 3.
Note that if sample profiling feedback-driven optimization is also desired, that happens before step 1 above. In this case, the sample profile afdo file that was used to produce the binary at step 1 must also be included in step 4.
The data needed by the compiler in order to identify prefetch insertion points is very similar to what is needed for sample profiles. For this reason, and given that the overall approach (memory tracing-based cache recommendation mechanisms) is under active development, we use the afdo format as a syntax for capturing this information. We avoid confusing semantics with sample profile afdo data by feeding the two types of information to the compiler through separate files and compiler flags. Should the approach prove successful, we can investigate improvements to this encoding mechanism.
Reviewers: davidxl, wmi, craig.topper
Reviewed By: davidxl, wmi, craig.topper
Subscribers: davide, danielcdh, mgorny, aprantl, eraman, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D54052
llvm-svn: 347596
It's possible in some cases to have a restore present
without a corresponding spill. Due to an apparent bug
in D54366 <https://reviews.llvm.org/D54366>, only the
restore for a register was emitted. It's probably
always a bug for this to happen, but due to how SGPR
spilling is implemented, this makes the issues appear
worse than it is.
llvm-svn: 347595
SplitVecOp_TruncateHelper tries to promote the result type while splitting FP_TO_SINT/UINT. It then concatenates the result and introduces a truncate to the original result type. But it does this without inserting the AssertZExt/AssertSExt that the regular result type promotion would insert. Nor does it turn FP_TO_UINT into FP_TO_SINT the way normal result type promotion for these operations does. This is bad on X86 which doesn't support FP_TO_SINT until AVX512.
This patch disables the use of SplitVecOp_TruncateHelper for these operations and just lets normal promotion handle it. I've tweaked a couple things in X86ISelLowering to avoid a few obvious regressions there. I believe all the changes on X86 are improvements. The other targets look neutral.
Differential Revision: https://reviews.llvm.org/D54906
llvm-svn: 347593
Summary:
Add a hook to the GCMetadataPrinter for emitting stack maps in
custom format. The hook will be called at stack map generation
time. The default stack map format is used if there is no hook.
For this to be useful a few data structures and accessors are
exposed from the StackMaps class, so the custom printer can
access the stack map data.
This patch authored by Cherry Zhang <cherryyz@google.com>.
Reviewers: thanm, apilipenko, reames
Reviewed By: reames
Subscribers: reames, apilipenko, nemanjai, javed.absar, kbarton, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D53892
llvm-svn: 347584