Summary:
If the first insertelement instruction has multiple users and inserts at
position 0, we can re-use this instruction when folding a chain of
insertelement instructions. As we need to generate the first
insertelement instruction anyways, this should be a strict improvement.
We could get rid of the restriction of inserting at position 0 by
creating a different shufflemask, but it is probably worth to keep the
first insertelement instruction with position 0, as this is easier to do
efficiently than at other positions I think.
Reviewers: grosser, mkuper, fpetrogalli, efriedma
Reviewed By: fpetrogalli
Subscribers: gareevroman, llvm-commits
Differential Revision: https://reviews.llvm.org/D37064
llvm-svn: 312110
This patch adds splat support to transformZExtICmp. The test cases are vector versions of tests that failed when commenting out parts of the existing scalar code.
One test didn't vectorize optimize properly due to another bug so a TODO has been added.
Differential Revision: https://reviews.llvm.org/D37253
llvm-svn: 312023
This was pretty close to working already. While I was here I went ahead and passed the ICmpInst pointer from the caller instead of doing a dyn_cast that can never fail.
Differential Revision: https://reviews.llvm.org/D37237
llvm-svn: 311960
We were handling some vectors in foldSelectIntoOp, but not if the operand of the bin op was any kind of vector constant. This patch fixes it to treat vector splats the same as scalars.
Differential Revision: https://reviews.llvm.org/D37232
llvm-svn: 311940
There are cases where AShr have better chance to be optimized than LShr, especially when the demanded bits are not known to be Zero, and also known to be similar to the sign bit.
Differential Revision: https://reviews.llvm.org/D36936
llvm-svn: 311773
There are 3 small independent changes here:
1. Account for multiple uses in the pattern matching: avoid the transform if it increases the instruction count.
2. Add a missing fold for the case where the numerator is the constant: http://rise4fun.com/Alive/E2p
3. Enable all folds for vector types.
There's still one more potential change - use "shouldChangeType()" to keep from transforming to an illegal integer type.
Differential Revision: https://reviews.llvm.org/D36988
llvm-svn: 311726
Summary:
Most DIExpressions are empty or very simple. When they are complex, they
tend to be unique, so checking them inline is reasonable.
This also avoids the need for CodeGen passes to append to the
llvm.dbg.mir named md node.
See also PR22780, for making DIExpression not be an MDNode.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37075
llvm-svn: 311594
InstCombine folds instructions with irrelevant conditions to undef.
This, as Nuno confirmed is a bug.
(see https://bugs.llvm.org/show_bug.cgi?id=33409#c1 )
Given the original motivation for the change is that of removing an
USE, we now fold to false instead (which reaches the same goal
without undesired side effects).
Fixes PR33409.
Differential Revision: https://reviews.llvm.org/D36975
llvm-svn: 311540
Looks like for 'and' and 'or' we end up performing at least some of the transformations this is bocking in a round about way anyway.
For 'and sext(cmp1), sext(cmp2) we end up later turning it into 'select cmp1, sext(cmp2), 0'. Then we optimize that back to sext (and cmp1, cmp2). This is the same result we would have gotten if shouldOptimizeCast hadn't blocked it. We do something analogous for 'or'.
With this patch we allow that transformation to happen directly in foldCastedBitwiseLogic. And we now support the same thing for 'xor'. This is definitely opening up many other cases, but since we already went around it for some cases hopefully it's ok.
Differential Revision: https://reviews.llvm.org/D36213
llvm-svn: 311508
The 1st try was reverted because it could inf-loop by creating a dead instruction.
Fixed that to not happen and added a test case to verify.
Original commit message:
Try to fold:
memcmp(X, C, ConstantLength) == 0 --> load X == *C
Without this change, we're unnecessarily checking the alignment of the constant data,
so we miss the transform in the first 2 tests in the patch.
I noted this shortcoming of LibCallSimpifier in one of the recent CGP memcmp expansion
patches. This doesn't help the example in:
https://bugs.llvm.org/show_bug.cgi?id=34032#c13
...directly, but it's worth short-circuiting more of these simple cases since we're
already trying to do that.
The benefit of transforming to load+cmp is that existing IR analysis/transforms may
further simplify that code. For example, if the load of the variable is common to
multiple memcmp calls, CSE can remove the duplicate instructions.
Differential Revision: https://reviews.llvm.org/D36922
llvm-svn: 311366
This is similar to what was already done in foldSelectICmpAndOr. Ultimately I'd like to see if we can call foldSelectICmpAnd from foldSelectIntoOp if we detect a power of 2 constant. This would allow us to remove foldSelectICmpAndOr entirely.
Differential Revision: https://reviews.llvm.org/D36498
llvm-svn: 311362
This is the baseline (current) version of the tests that would
have been added with the transform in r311333 (reverted at
r311340 due to inf-looping).
Adding these now to aid in testing and minimize the patch if/when
it is reinstated.
llvm-svn: 311350
Summary:
If the bitsToClear from the LHS of an 'and' comes back non-zero, but all of those bits are known zero on the RHS, we can reset bitsToClear.
Without this, the 'or' in the modified test case blocks the transform because it has non-zero bits in its RHS in those bits.
Reviewers: spatel, majnemer, davide
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36944
llvm-svn: 311343
Try to fold:
memcmp(X, C, ConstantLength) == 0 --> load X == *C
Without this change, we're unnecessarily checking the alignment of the constant data,
so we miss the transform in the first 2 tests in the patch.
I noted this shortcoming of LibCallSimpifier in one of the recent CGP memcmp expansion
patches. This doesn't help the example in:
https://bugs.llvm.org/show_bug.cgi?id=34032#c13
...directly, but it's worth short-circuiting more of these simple cases since we're
already trying to do that.
The benefit of transforming to load+cmp is that existing IR analysis/transforms may
further simplify that code. For example, if the load of the variable is common to
multiple memcmp calls, CSE can remove the duplicate instructions.
Differential Revision: https://reviews.llvm.org/D36922
llvm-svn: 311333
We were only allowing ConstantInt before. This patch allows splat of ConstantInt too.
Differential Revision: https://reviews.llvm.org/D36763
llvm-svn: 310970
Narrow ops are better for bit-tracking, and in the case of vectors,
may enable better codegen.
As the trunc test shows, this can allow follow-on simplifications.
There's a block of code in visitTrunc that deals with shifted ops
with FIXME comments. It may be possible to remove some of that now,
but I want to make sure there are no problems with this step first.
http://rise4fun.com/Alive/Y3a
Name: hoist_ashr_ahead_of_sext_1
%s = sext i8 %x to i32
%r = ashr i32 %s, 3 ; shift value is < than source bit width
=>
%a = ashr i8 %x, 3
%r = sext i8 %a to i32
Name: hoist_ashr_ahead_of_sext_2
%s = sext i8 %x to i32
%r = ashr i32 %s, 8 ; shift value is >= than source bit width
=>
%a = ashr i8 %x, 7 ; so clamp this shift value
%r = sext i8 %a to i32
Name: junc_the_trunc
%a = sext i16 %v to i32
%s = ashr i32 %a, 18
%t = trunc i32 %s to i16
=>
%t = ashr i16 %v, 15
llvm-svn: 310942
This also corrects the description to match what was actually implemented. The old comment said X^(C1|C2), but it implemented X^((C1|C2)&~(C1&C2)). I believe ((C1|C2)&~(C1&C2)) is equivalent to (C1^C2).
Differential Revision: https://reviews.llvm.org/D36505
llvm-svn: 310658
We used to try to truncate the constant vector to vXi1, but if it's already i1 this would fail. Instead we now use IRBuilder::getZExtOrTrunc which should check the type and only create a trunc if needed. I believe this should trigger constant folding in the IRBuilder and ultimately do the same thing just with the additional type check.
llvm-svn: 310639
Current behavior is to transform these independently of the datalayout.
There's a proposal to change this in D35035:
https://reviews.llvm.org/D35035
llvm-svn: 310611
I couldn't find any smaller folds to help the cases in:
https://bugs.llvm.org/show_bug.cgi?id=34046
after:
rL310141
The truncated rotate-by-variable patterns elude all of the existing transforms because
of multiple uses and knowledge about demanded bits and knownbits that doesn't exist
without the whole pattern. So we need an unfortunately large pattern match. But by
simplifying this pattern in IR, the backend is already able to generate
rolb/rolw/rorb/rorw for x86 using its existing rotate matching logic (although
there is a likely extraneous 'and' of the rotate amount).
Note that rotate-by-constant doesn't have this problem - smaller folds should already
produce the narrow IR ops.
Differential Revision: https://reviews.llvm.org/D36395
llvm-svn: 310509
We already support pulling through an add with constant RHS. We can do the same for subtract.
Differential Revision: https://reviews.llvm.org/D36443
llvm-svn: 310407
Note the original code I deleted incorrectly listed this as (X | C1) & C2 --> (X & C2^(C1&C2)) | C1 Which is only valid if C1 is a subset of C2. This relied on SimplifyDemandedBits to remove any extra bits from C1 before we got to that code.
My new implementation avoids relying on that behavior so that it can be naively verified with alive.
Differential Revision: https://reviews.llvm.org/D36384
llvm-svn: 310272
Unfortunately, it looks like there's some other missed optimizations in the generated code for some of these cases. I'll try to look at some of those next.
llvm-svn: 310184
Previously we were always trying to emit the zext or truncate before any shift. This meant if the 'and' mask was larger than the size of the truncate we would skip the transformation.
Now we shift the result of the and right first leaving the bit within the range of the truncate.
This matches what we are doing in foldSelectICmpAndOr for the same problem.
llvm-svn: 310159