after legalize. Just because a constant is legal (e.g. 0.0 in SSE)
doesn't mean that its negated value is legal (-0.0). We could make
this stronger by checking to see if the negated constant is actually
legal post negation, but it doesn't seem like a big deal.
llvm-svn: 47591
CTTZ and CTPOP. The expansion code differs from
that in LegalizeDAG in that it chooses to take the
CTLZ/CTTZ count from the Hi/Lo part depending on
whether the Hi/Lo value is zero, not on whether
CTLZ/CTTZ of Hi/Lo returned 32 (or whatever the
width of the type is) for it. I made this change
because the optimizers may well know that Hi/Lo
is zero and exploit it. The promotion code for
CTTZ also differs from that in LegalizeDAG: it
uses an "or" to get the right result when the
original value is zero, rather than using a compare
and select. This also means the value doesn't
need to be zero extended.
llvm-svn: 47075
any bugs in the future since to get the crash you also
need hacked in fake libcall support (which creates odd
but legal trees), but since adding it doesn't hurt...
Thanks to Chris for this ultimately reduced version.
llvm-svn: 46706
delete a node even if it was not dead in some cases. Instead, just add it to
the worklist. Also, make sure to use the CombineTo methods, as it was doing
things that were unsafe: the top level combine loop could touch dangling memory.
This fixes CodeGen/Generic/2008-01-25-dag-combine-mul.ll
llvm-svn: 46384
values, which means doing extra legalization work.
It would be easier to get this kind of thing right if
there was some documentation...
llvm-svn: 45472
define void @f() {
...
call i32 @g()
...
}
define void @g() {
...
}
The hazards are:
- @f and @g have GC, but they differ GC. Inlining is invalid. This
may never occur.
- @f has no GC, but @g does. g's GC must be propagated to @f.
The other scenarios are safe:
- @f and @g have the same GC.
- @f and @g have no GC.
- @g has no GC.
This patch adds inliner checks for the former two scenarios.
llvm-svn: 45351
methods are new to Function:
bool hasCollector() const;
const std::string &getCollector() const;
void setCollector(const std::string &);
void clearCollector();
The assembly representation is as such:
define void @f() gc "shadow-stack" { ...
The implementation uses an on-the-side table to map Functions to
collector names, such that there is no overhead. A StringPool is
further used to unique collector names, which are extremely
likely to be unique per process.
llvm-svn: 44769
node A gets back into the DAG again because it was hiding in
one of the node maps: make sure that node replacement happens
in those maps too.
llvm-svn: 44263
LLVM now enforces the following prototypes for the write barriers:
<ty>* @llvm.gcread(<ty2>*, <ty>**)
void @llvm.gcwrite(<ty>*, <ty2>*, <ty>**)
And for @llvm.gcroot, the first stack slot is verified to be an alloca or a
bitcast of an alloca.
Fixes test/CodeGen/Generic/GC/lower_gcroot.ll, which violated these.
llvm-svn: 42051
This also changes the syntax for llvm.bswap, llvm.part.set, llvm.part.select, and llvm.ct* intrinsics. They are automatically upgraded by both the LLVM ASM reader and the bitcode reader. The test cases have been updated, with special tests added to ensure the automatic upgrading is supported.
llvm-svn: 40807
mnemonics from their operands instead of single spaces. This makes the
assembly output a little more consistent with various other compilers
(f.e. GCC), and slightly easier to read. Also, update the regression
tests accordingly.
llvm-svn: 40648
Move tests that have C/C++ sources into the appropriate directory. This
allows them to be selected for testing based on whether llvm-gcc is
present or not.
llvm-svn: 39963