Build a object with -fbasic-block-sections and reorder the basic blocks to be
non-contiguous. Then check if llvm-symbolizer correctly reports the symbolized
addresses. Included the source to build the object with command lines.
Differential Revision: https://reviews.llvm.org/D91678
1. Break MUL with specific constant to a SLLI and an ADD/SUB on riscv32
with the M extension.
2. Break MUL with specific constant to two SLLI and an ADD/SUB, if the
constant needs a pair of LUI/ADDI to construct.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D93619
Since we're leaving this as ReadWrite with the "write" reflecting
the update to MXCSR, we shouldn't say it only writes arg memory.
Hopefully this fixes the issue reported in post-commit in D93571.
Treat a non-atomic volatile load and store as a relaxed atomic at
system scope for the address spaces accessed. This will ensure all
relevant caches will be bypassed.
A volatile atomic is not changed and still only bypasses caches upto
the level specified by the SyncScope operand.
Differential Revision: https://reviews.llvm.org/D94214
Match the legacy PM in running various ObjC ARC passes.
This requires making some module passes into function passes. These were
initially ported as module passes since they add function declarations
(e.g. https://reviews.llvm.org/D86178), but that's still up for debate
and other passes do so.
Reviewed By: ahatanak
Differential Revision: https://reviews.llvm.org/D93743
The pipe signal handler must be installed before any other handlers are
registered. This is because the Unix RegisterHandlers function does not
perform a sigaction() for SIGPIPE unless a one-shot handler is present,
to allow long-lived processes (like lldb) to fully opt-out of llvm's
SIGPIPE handling and ignore the signal safely.
Fixes a bug introduced in D70277.
Tested by running Nick's test case:
% xcrun ./bin/clang -E -fno-integrated-cc1 x.c | tee foo.txt | head
I verified that child cc1 process exits with IO_ERR, and that the parent
recognizes the error code, exiting cleanly.
Differential Revision: https://reviews.llvm.org/D94324
d9ce31ae7d (D94322) removed the check because I thought it was dead
due to checking the existance of a variable (which always existed).
This causes LLDB tests to fail as they set NO_INSTALL_RPATH because
they're never meant to be installed, but we still would end up using
the install rpath.
Add the check back and make it explicitly check for an empty value
to make the purpose clearer and avoid implicit test for a false/true
value.
Differential Revision: https://reviews.llvm.org/D94326
Reverted check for empty CMAKE_BUILD_RPATH fixed.
When `BUILD_WITH_INSTALL_RPATH` is enabled it prevents using a custom rpath only
for the build tree as the install rpath will be used. This makes it impossible to run a
runtimes build when compiling with Clang and wanting the installed rpath to be
empty (i.e. `-DCMAKE_BUILD_RPATH="<some path>" -DCMAKE_SKIP_INSTALL_RPATH=ON`).
Disable `BUILD_WITH_INSTALL_RPATH` when `CMAKE_BUILD_RPATH` is non-empty to
allow for such build scenarios.
Differential Revision: https://reviews.llvm.org/D94322
The ISel patterns we have for truncating to i1's under MVE do not seem
to be correct. Instead custom lower to icmp(ne, and(x, 1), 0).
Differential Revision: https://reviews.llvm.org/D94226
This reverts commit 0ebc1fb29f278db0665423f15c53e6ee9601dddb.
The behaviour should have been the same as before unless specifying CMAKE_BUILD_RPATH,
which was previously broken.
However, this seems to have broken builds for some people that don't specify it.
Reverting until I can investigate.
Differential Revision: https://reviews.llvm.org/D94319
This was suggested to prepare for D93975.
By moving the start value creation to widenPHInstruction, we set the
stage to manage the start value directly in VPWidenPHIRecipe, which be
used subsequently to set the 'resume' value for reductions during
epilogue vectorization.
It also moves RdxDesc to the recipe, so we do not have to rely on Legal
to look it up later.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D94175
Similar to the Arm VCTP intrinsics, if the operands of an
active.lane.mask are both known, the constant lane mask can be
calculated. This can come up after unrolling the loops.
Differential Revision: https://reviews.llvm.org/D94103
`wasm_rethrow_in_catch` intrinsic and builtin are used in order to
rethrow an exception when the exception is caught but there is no
matching clause within the current `catch`. For example,
```
try {
foo();
} catch (int n) {
...
}
```
If the caught exception does not correspond to C++ `int` type, it should
be rethrown. These intrinsic/builtin were renamed `rethrow_in_catch`
because at the time I thought there would be another intrinsic for C++'s
`throw` keyword, which rethrows an exception. It turned out that `throw`
keyword doesn't require wasm's `rethrow` instruction, so we rename
`rethrow_in_catch` to just `rethrow` here.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94038
Differential Revision: https://reviews.llvm.org/D93911
This first step adds the assert statement and supports it at top level
and in record definitions. Later steps will support it in class
definitions and multiclasses.
Support pack_f32p and pack_f32a intrinsic instructions and regression tests.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D94296
cfg-stackify-eh.ll contains many `CHECK` lines specifying label / catch
comments with numbers. These numbers are subject to change every time
any block/loop/try is added in the middle in existing functions or any
other function is added in the middle of the file, generating a large
number of lines in diffs. This change converts them to variables so they
can be more resistent to future changes.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94037
This implements vp_add, vp_and for the VE target by lowering them to the
VVP_* layer. We also add helper functions for VP SDNodes (isVPSDNode,
getVPMaskIdx, getVPExplicitVectorLengthIdx).
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D93766
As noted in PR48689, the verifier may have some kind
of exponential behavior that should be addressed
separately. For now, only run it in debug mode to
prevent problems for release+asserts.
That limit is what we had before D80401, and I'm
not sure if there was a reason to change it in that
patch.
Clean ISel patterns for LSV and LVS before upstream more hand-written
ISel patterns.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D94291
Fixes a crash caused by D91255, when LLVMTy is null when
calling changeExtendedVectorElementType.
Differential Revision: https://reviews.llvm.org/D94234
In the following loop:
void foo(int *a, int *b, int N) {
for (int i=0; i<N; ++i)
a[i + 4] = a[i] + b[i];
}
The loop dependence constrains the VF to a maximum of (4, fixed), which
would mean using <4 x i32> as the vector type in vectorization.
Extending this to scalable vectorization, a VF of (4, scalable) implies
a vector type of <vscale x 4 x i32>. To determine if this is legal
vscale must be taken into account. For this example, unless
max(vscale)=1, it's unsafe to vectorize.
For SVE, the number of bits in an SVE register is architecturally
defined to be a multiple of 128 bits with a maximum of 2048 bits, thus
the maximum vscale is 16. In the loop above it is therefore unfeasible
to vectorize with SVE. However, in this loop:
void foo(int *a, int *b, int N) {
#pragma clang loop vectorize_width(X, scalable)
for (int i=0; i<N; ++i)
a[i + 32] = a[i] + b[i];
}
As long as max(vscale) multiplied by the number of lanes 'X' doesn't
exceed the dependence distance, it is safe to vectorize. For SVE a VF of
(2, scalable) is within this constraint, since a vector of <16 x 2 x 32>
will have no dependencies between lanes. For any number of lanes larger
than this it would be unsafe to vectorize.
This patch extends 'computeFeasibleMaxVF' to legalize scalable VFs
specified as loop hints, implementing the following behaviour:
* If the backend does not support scalable vectors, ignore the hint.
* If scalable vectorization is unfeasible given the loop
dependence, like in the first example above for SVE, then use a
fixed VF.
* Accept scalable VFs if it's safe to do so.
* Otherwise, clamp scalable VFs that exceed the maximum safe VF.
Reviewed By: sdesmalen, fhahn, david-arm
Differential Revision: https://reviews.llvm.org/D91718
We do this mostly to be able to test the insert_vector_elt isel
patterns. As long as we don't, most single element insertions show up as
`BUILD_VECTOR` in the backend.
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D93759
Update CodeGen regression tests with marker at first line telling it's
auto-generated by the script, under PowerPC directory. For some reason,
these tests are generated but manually written, which makes things
unclear when someone's change affecting them.
However, some tests only show simple change after re-generated, like
extra blank lines, disappearing '.localentry', etc. Besides, some tests
are generated but added checks for debug output. This commit doesn't try
updating them.
The new test case here contains a first order recurrences and an
instruction that is replicated. The first order recurrence forces an
instruction to be sunk _into_, as opposed to after the replication
region. That causes several things to go wrong including registering
vector instructions multiple times and failing to create dominance
relations correctly.
Instead we should be sinking to after the replication region, which is
what this patch makes sure happens.
Differential Revision: https://reviews.llvm.org/D93629
This patch introduces additional infrastructure necessary to accommodate DiagnosticOptions.
DiagnosticOptions are unique in that they are parsed by the same function in cc1 AND in the Clang driver. The call to the parsing function from the driver occurs early on in the compilation process, where no proper DiagnosticEngine exists, because the diagnostic options (passed through command line) are not known yet.
To preserve the current behavior, we need to be able to selectively parse:
* all options (for -cc1),
* only diagnostic options (for driver).
This patch achieves that in the following way:
* new MacroPrefix field is added to the Option TableGen class,
* new IsDiag TableGen mixin sets MacroPrefix to "DIAG_",
* TableGen backend serializes option records into a macro with the prefix,
* CompilerInvocation parse/generate methods define the [DIAG_]OPTION_WITH_MARSHALLING macros to handle diagnostic options separately.
Depends on D93700, D93701 & D93702.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D84673