1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 06:22:56 +02:00
Commit Graph

469 Commits

Author SHA1 Message Date
Tim Northover
a640d920b4 CodeGen: convert CCState interface to using ArrayRefs
Everyone except R600 was manually passing the length of a static array
at each callsite, calculated in a variety of interesting ways. Far
easier to let ArrayRef handle that.

There should be no functional change, but out of tree targets may have
to tweak their calls as with these examples.

llvm-svn: 230118
2015-02-21 02:11:17 +00:00
Andrea Di Biagio
bd0813ded2 [X86][FastIsel] Teach how to select float-half conversion intrinsics.
This patch teaches X86FastISel how to select intrinsic 'convert_from_fp16' and
intrinsic 'convert_to_fp16'.
If the target has F16C, we can select VCVTPS2PHrr for a float-half conversion,
and VCVTPH2PSrr for a half-float conversion.

Differential Revision: http://reviews.llvm.org/D7673

llvm-svn: 230043
2015-02-20 19:37:14 +00:00
Andrea Di Biagio
016c12ee8d [X86][FastIsel] Teach how to select scalar integer to float/double conversions.
This patch teaches fast-isel how to select a (V)CVTSI2SSrr for an integer to 
float conversion, and how to select a (V)CVTSI2SDrr for an integer to double
conversion.

Added test 'fast-isel-int-float-conversion.ll'.

Differential Revision: http://reviews.llvm.org/D7698

llvm-svn: 229589
2015-02-17 23:40:58 +00:00
David Majnemer
e15f9edb53 X86: @llvm.frameaddress should defer to SelectionDAG for Win CFI
llvm-svn: 228754
2015-02-10 22:00:34 +00:00
Andrea Di Biagio
3063960b2e [X86][FastIsel] Avoid introducing legacy SSE instructions if the target has AVX.
This patch teaches X86FastISel how to select AVX instructions for scalar
float/double convert operations.

Before this patch, X86FastISel always selected legacy SSE instructions
for FPExt (from float to double) and FPTrunc (from double to float).

For example:
\code
  define double @foo(float %f) {
    %conv = fpext float %f to double
    ret double %conv
  }
\end code

Before (with -mattr=+avx -fast-isel) X86FastIsel selected a CVTSS2SDrr which is
legacy SSE:
  cvtss2sd %xmm0, %xmm0

With this patch, X86FastIsel selects a VCVTSS2SDrr instead:
  vcvtss2sd %xmm0, %xmm0, %xmm0

Added test fast-isel-fptrunc-fpext.ll to check both the register-register and
the register-memory float/double conversion variants.

Differential Revision: http://reviews.llvm.org/D7438

llvm-svn: 228682
2015-02-10 12:04:41 +00:00
Eric Christopher
0cf178e495 Migrate to using the subtarget on the machine function and update
all uses.

llvm-svn: 227891
2015-02-02 23:03:45 +00:00
Michael Kuperstein
41ae9af2e3 [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

(Re-commit of r227728)

Differential Revision: http://reviews.llvm.org/D6789

llvm-svn: 227752
2015-02-01 16:56:04 +00:00
Michael Kuperstein
f73ce6a4c9 Revert r227728 due to bad line endings.
llvm-svn: 227746
2015-02-01 16:15:07 +00:00
Michael Kuperstein
2f448f269c [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

Differential Revision: http://reviews.llvm.org/D6789

llvm-svn: 227728
2015-02-01 11:44:44 +00:00
David Blaikie
effa0911ff DebugInfo: Teach Fast ISel to respect the debug location of comparisons in jumps
The use of the DbgLoc in FastISel is probably something we should fix.
It's prone to leaking the wrong location into instructions - we should
have a clear chain of custody from the debug location of an IR
Instruction to that of a MachineInstr to avoid such leakage.

llvm-svn: 227481
2015-01-29 19:09:18 +00:00
Eric Christopher
aacfef65cf Move DataLayout back to the TargetMachine from TargetSubtargetInfo
derived classes.

Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.

*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.

llvm-svn: 227113
2015-01-26 19:03:15 +00:00
Michael Kuperstein
de439866fe [x32] Fast ISel should use LEA64_32r instead of LEA32r to adjust addresses in x32 mode.
llvm-svn: 226661
2015-01-21 14:44:05 +00:00
Craig Topper
ab5fd9d585 [X86] Make isel select the 2-byte register form of INC/DEC even in non-64-bit mode. Convert to the 1-byte form in non-64-bit mode as part of MCInst lowering.
Overall this seems simpler. It reduces duplication of patterns between both modes and it simplifies the memory folding/unfolding tables as they don't need to create fake instructions just to keep track of 64-bitness.

llvm-svn: 225252
2015-01-06 07:35:50 +00:00
Craig Topper
1897b93c87 [X86] Make isel select the shorter form of jump instructions instead of the long form.
The assembler backend will relax to the long form if necessary. This removes a swap from long form to short form in the MCInstLowering code. Selecting the long form used to be required by the old JIT.

llvm-svn: 225242
2015-01-06 04:23:53 +00:00
Keno Fischer
ccce564b31 [X86][ISel] Fix a regression I introduced in r224884
The else case ResultReg was not checked for validity.
To my surprise, this case was not hit in any of the
existing test cases. This includes a new test cases
that tests this path.

Also drop the `target triple` declaration from the
original test as suggested by H.J. Lu, because
apparently with it the test won't be run on Linux

llvm-svn: 224901
2014-12-28 15:20:57 +00:00
Keno Fischer
fae085c8f8 [FastIsel][X86] Fix invalid register replacement for bool args
Summary:
Consider the following IR:

  %3 = load i8* undef
  %4 = trunc i8 %3 to i1
  %5 = call %jl_value_t.0* @foo(..., i1 %4, ...)
  ret %jl_value_t.0* %5

Bools (that are the result of direct truncs) are lowered as whatever
the argument to the trunc was and a "and 1", causing the part of the
MBB responsible for this argument to look something like this:

  %vreg8<def,tied1> = AND8ri %vreg7<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg8,%vreg7

Later, when the load is lowered, it will insert

  %vreg15<def> = MOV8rm %vreg14, 1, %noreg, 0, %noreg; mem:LD1[undef] GR8:%vreg15 GR64:%vreg14

but remember to (at the end of isel) replace vreg7 by vreg15. Now for
the bug. In fast isel lowering, we mistakenly mark vreg8 as the result
of the load instead of the trunc. This adds a fixup to have
vreg8 replaced by whatever the result of the load is as well, so
we end up with

  %vreg15<def,tied1> = AND8ri %vreg15<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg15

which is an SSA violation and causes problems later down the road.

This fixes PR21557.

Test Plan: Test test case from PR21557 is added to the test suite.

Reviewers: ributzka

Reviewed By: ributzka

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6245

llvm-svn: 224884
2014-12-27 13:10:15 +00:00
Jan Wen Voung
b856ac92dc Use 32-bit ebp for NaCl64 in a limited case: llvm.frameaddress.
Summary:
Follow up to [x32] "Use ebp/esp as frame and stack pointer":
http://reviews.llvm.org/D4617

In that earlier patch, NaCl64 was made to always use rbp.
That's needed for most cases because rbp should hold a full
64-bit address within the NaCl sandbox so that load/stores
off of rbp don't require sandbox adjustment (zeroing the top
32-bits, then filling those by adding r15).

However, llvm.frameaddress returns a pointer and pointers
are 32-bit for NaCl64. In this case, use ebp instead, which
will make the register copy type check. A similar mechanism
may be needed for llvm.eh.return, but is not added in this change.

Test Plan: test/CodeGen/X86/frameaddr.ll

Reviewers: dschuff, nadav

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D6514

llvm-svn: 223510
2014-12-05 20:55:53 +00:00
Michael Liao
59822d4755 [X86] Clean up whitespace as well as minor coding style
llvm-svn: 223339
2014-12-04 05:20:33 +00:00
Craig Topper
45dffff5e4 Remove a bunch of unnecessary typecasts to 'const TargetRegisterClass *'
llvm-svn: 222509
2014-11-21 05:58:21 +00:00
Derek Schuff
2c22caff55 [x86 fast-isel] Materialize allocas with the correct-sized lea for ILP32
Summary:
X86FastISel::fastMaterializeAlloca was incorrectly conditioning its
opcode selection on subtarget bitness rather than pointer size.

Differential Revision: http://reviews.llvm.org/D6136

llvm-svn: 221386
2014-11-05 19:27:21 +00:00
Simon Pilgrim
0ccb373260 [X86] Memory folding for commutative instructions (updated)
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.

Updated version of r219584 (reverted in r219595) - the commutation attempt now explicitly ensures that neither of the commuted source operands are tied to the destination operand / register, which was the source of all the regressions that occurred with the original patch attempt.

Added additional regression test case provided by Joerg Sonnenberger.

Differential Revision: http://reviews.llvm.org/D5818

llvm-svn: 220239
2014-10-20 22:14:22 +00:00
NAKAMURA Takumi
82b729d656 Revert r219584, "[X86] Memory folding for commutative instructions."
It broke i686 selfhosting.

llvm-svn: 219595
2014-10-13 04:17:34 +00:00
Simon Pilgrim
3b8f17ae65 [X86] Memory folding for commutative instructions.
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.

This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.

Differential Revision: http://reviews.llvm.org/D5701

llvm-svn: 219584
2014-10-12 10:52:55 +00:00
Adrian Prantl
2b1df58ebe Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl
0959156fa3 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl
229943585f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Daniel Sanders
f02986683b Add llvm_unreachables() for [ASZ]ExtUpper to X86FastISel.cpp to appease the buildbots.
llvm-svn: 218452
2014-09-25 13:08:51 +00:00
Juergen Ributzka
0a4f4becc3 [FastISel] Move optimizeCmpPredicate to FastISel base class. NFC.
Make the optimizeCmpPredicate function available to all targets.

llvm-svn: 217822
2014-09-15 20:47:13 +00:00
Juergen Ributzka
76dd2e3da7 [FastISel][tblgen] Rename tblgen generated FastISel functions. NFC.
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.

Reviewed by Eric

llvm-svn: 217075
2014-09-03 20:56:59 +00:00
Juergen Ributzka
fa7bc008ce [FastISel] Rename public visible FastISel functions. NFC.
This commit renames the following public FastISel functions:
LowerArguments -> lowerArguments
SelectInstruction -> selectInstruction
TargetSelectInstruction -> fastSelectInstruction
FastLowerArguments -> fastLowerArguments
FastLowerCall -> fastLowerCall
FastLowerIntrinsicCall -> fastLowerIntrinsicCall
FastEmitZExtFromI1 -> fastEmitZExtFromI1
FastEmitBranch -> fastEmitBranch
UpdateValueMap -> updateValueMap
TargetMaterializeConstant -> fastMaterializeConstant
TargetMaterializeAlloca -> fastMaterializeAlloca
TargetMaterializeFloatZero -> fastMaterializeFloatZero
LowerCallTo -> lowerCallTo

Reviewed by Eric

llvm-svn: 217074
2014-09-03 20:56:52 +00:00
Juergen Ributzka
9c8880d176 Reapply [FastISel][X86] Add large code model support for materializing floating-point constants (r215595).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.

Original commit message:
In the large code model for X86 floating-point constants are placed in the
constant pool and materialized by loading from it. Since the constant pool
could be far away, a PC relative load might not work. Therefore we first
materialize the address of the constant pool with a movabsq and then load
from there the floating-point value.

Fixes <rdar://problem/17674628>.

llvm-svn: 216012
2014-08-19 19:44:13 +00:00
Juergen Ributzka
0d6f36970b Reapply [FastISel][X86] Use XOR to materialize the "0" value (r215594).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.

llvm-svn: 216011
2014-08-19 19:44:10 +00:00
Juergen Ributzka
496a8f883b Reapply [FastISel][X86] Emit more efficient instructions for integer constant materialization (r215593).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.

Original commit message:
This mostly affects the i64 value type, which always resulted in an 15byte
mobavsq instruction to materialize any constant. The custom code checks the
value of the immediate and tries to use a different and smaller mov
instruction when possible.

This fixes <rdar://problem/17420988>.

llvm-svn: 216010
2014-08-19 19:44:06 +00:00
Juergen Ributzka
a981de1e50 Revert several FastISel commits to track down a buildbot error.
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."

llvm-svn: 215673
2014-08-14 19:56:28 +00:00
Juergen Ributzka
48c446b654 [FastISel][X86] Add large code model support for materializing floating-point constants.
In the large code model for X86 floating-point constants are placed in the
constant pool and materialized by loading from it. Since the constant pool
could be far away, a PC relative load might not work. Therefore we first
materialize the address of the constant pool with a movabsq and then load
from there the floating-point value.

Fixes <rdar://problem/17674628>.

llvm-svn: 215595
2014-08-13 22:25:35 +00:00
Juergen Ributzka
812ef43f49 [FastISel][X86] Use XOR to materialize the "0" value.
llvm-svn: 215594
2014-08-13 22:22:17 +00:00
Juergen Ributzka
9760c4b351 [FastISel][X86] Emit more efficient instructions for integer constant materialization.
This mostly affects the i64 value type, which always resulted in an 15byte
mobavsq instruction to materialize any constant. The custom code checks the
value of the immediate and tries to use a different and smaller mov
instruction when possible.

This fixes <rdar://problem/17420988>.

llvm-svn: 215593
2014-08-13 22:18:11 +00:00
Juergen Ributzka
a1bfac9396 [FastISel][X86] Refactor constant materialization. NFCI.
Split the constant materialization code into three separate helper functions for
Integer-, Floating-Point-, and GlobalValue-Constants.

llvm-svn: 215586
2014-08-13 22:01:55 +00:00
Rui Ueyama
0e0a54e3e6 [FastISel][X86] Silence -Wenum-compare warning
llvm-svn: 215253
2014-08-08 22:47:49 +00:00
Juergen Ributzka
896851e155 [FastISel][X86] Fix INC/DEC optimization (r215230)
I accidentally also used INC/DEC for unsigned arithmetic which doesn't work,
because INC/DEC don't set the required flag which is used for the overflow
check.

llvm-svn: 215237
2014-08-08 18:47:04 +00:00
Juergen Ributzka
18879eb501 [FastISel][X86] Use INC/DEC when possible for {sadd|ssub}.with.overflow intrinsics.
This is a small peephole optimization to emit INC/DEC when possible.

Fixes <rdar://problem/17952308>.

llvm-svn: 215230
2014-08-08 17:21:37 +00:00
Eric Christopher
4a1cdb2ba7 Remove the target machine from CCState. Previously it was only used
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.

llvm-svn: 214988
2014-08-06 18:45:26 +00:00
Eric Christopher
99307e99a2 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Akira Hatanaka
2cf112b51e [X86] Simplify X87 stackifier pass.
Stop using ST registers for function returns and inline-asm instructions and use
FP registers instead. This allows removing a large amount of code in the
stackifier pass that was needed to track register liveness and handle copies
between ST and FP registers and function calls returning floating point values.

It also fixes a bug which manifests when an ST register defined by an
inline-asm instruction was live across another inline-asm instruction, as shown
in the following sequence of machine instructions:

1. INLINEASM <es:frndint> $0:[regdef], %ST0<imp-def,tied5>
2. INLINEASM <es:fldcw $0>
3. %FP0<def> = COPY %ST0

<rdar://problem/16952634>

llvm-svn: 214580
2014-08-01 22:19:41 +00:00
Juergen Ributzka
f6e1a34d78 [FastISel][AArch64 and X86] Don't emit stores for UNDEF arguments during function call lowering.
UNDEF arguments are not ment to be touched - especially for the webkit_js
calling convention. This fix reproduces the already existing behavior of
SelectionDAG in FastISel.

llvm-svn: 214366
2014-07-31 00:11:11 +00:00
Juergen Ributzka
30bf8840d7 [FastISel] Move the helper function isCommutativeIntrinsic into FastISel base class.
Move the helper function isCommutativeIntrinsic into the FastISel base class,
so it can be used by more than just one backend.

llvm-svn: 214347
2014-07-30 22:04:28 +00:00
Andrea Di Biagio
d6b74facab Silence a warning in conditional expression.
Fixes a gcc warning caused by a typo. A redundant assignment operation was
accidentally used as the third operand of a conditional expression.
No functional change intended.

llvm-svn: 213061
2014-07-15 10:53:44 +00:00
Juergen Ributzka
3182b7c402 [FastISel][X86] Remove no longer needed functions.
llvm-svn: 213051
2014-07-15 06:35:53 +00:00
Juergen Ributzka
dcb0648576 [FastISel][X86] Implement the FastLowerIntrinsicCall hook.
Rename X86VisitIntrinsicCall -> FastLowerIntrinsicCall, which effectively
implements the target hook.

llvm-svn: 213050
2014-07-15 06:35:50 +00:00
Juergen Ributzka
e29c2182f5 [FastISel][X86] Implement the FastLowerCall hook.
This implements the FastLowerCall hook, which is based on the DoSelectCall
function. The implementation is very similar, but the target-independent call
lowering part has been factored out.

This should also enable patchpoint intrinsic lowering for FastISel on X86.

Related to <rdar://problem/17427052>.

llvm-svn: 213049
2014-07-15 06:35:47 +00:00