1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
Commit Graph

1158 Commits

Author SHA1 Message Date
David Blaikie
97537830d4 Fix -Wnon-virtual-dtor warning introduced in r217982.
llvm-svn: 217988
2014-09-17 22:15:40 +00:00
Chris Bieneman
b486dadca0 Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.

Reviewers: chandlerc, resistor

Reviewed By: resistor

Subscribers: morisset, resistor, llvm-commits

Differential Revision: http://reviews.llvm.org/D5364

llvm-svn: 217982
2014-09-17 20:55:46 +00:00
Andrea Di Biagio
99dc03a95d [InstCombine] Fix wrong folding of constant comparison involving ahsr and negative quantities (PR20945).
Example:
define i1 @foo(i32 %a) {
  %shr = ashr i32 -9, %a
  %cmp = icmp ne i32 %shr, -5
  ret i1 %cmp
}

Before this fix, the instruction combiner wrongly thought that %shr
could have never been equal to -5. Therefore, %cmp was always folded to 'true'.
However, when %a is equal to 1, then %cmp evaluates to 'false'. Therefore,
in this example, it is not valid to fold %cmp to 'true'.
The problem was only affecting the case where the comparison was between
negative quantities where one of the quantities was obtained from arithmetic
shift of a negative constant.

This patch fixes the problem with the wrong folding (fixes PR20945).
With this patch, the 'icmp' from the example is now simplified to a
comparison between %a and 1. This still allows us to get rid of the arithmetic
shift (%shr).

llvm-svn: 217950
2014-09-17 11:32:31 +00:00
Hal Finkel
5d195fd587 Check for all known bits on ret in InstCombine
From a combination of @llvm.assume calls (and perhaps through other means, such
as range metadata), it is possible that all bits of a return value might be
known. Previously, InstCombine did not check for this (which is understandable
given assumptions of constant propagation), but means that we'd miss simple
cases where assumptions are involved.

llvm-svn: 217346
2014-09-07 21:28:34 +00:00
Hal Finkel
be0364002a Add additional patterns for @llvm.assume in ValueTracking
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.

r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:

assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
                       can propagate inverted known bits from the a to v.

assume(v | b = a) :    For those bits in b that are known to be zero, we can
                       propagate known bits from the a to v.

assume(~(v | b) = a):  For those bits in b that are known to be zero, we can
                       propagate inverted known bits from the a to v.

assume(v ^ b = a) :    For those bits in b that are known to be zero, we can
		       propagate known bits from the a to v. For those bits in
		       b that are known to be one, we can propagate inverted
                       known bits from the a to v.

assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
		       propagate inverted known bits from the a to v. For those
		       bits in b that are known to be one, we can propagate
                       known bits from the a to v.

assume(v << c = a) :   For those bits in a that are known, we can propagate them
                       to known bits in v shifted to the right by c.

assume(~(v << c) = a) : For those bits in a that are known, we can propagate
                        them inverted to known bits in v shifted to the right by c.

assume(v >> c = a) :   For those bits in a that are known, we can propagate them
                       to known bits in v shifted to the right by c.

assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
                        them inverted to known bits in v shifted to the right by c.

assume(v >=_s c) where c is non-negative: The sign bit of v is zero

assume(v >_s c) where c is at least -1: The sign bit of v is zero

assume(v <=_s c) where c is negative: The sign bit of v is one

assume(v <_s c) where c is non-positive: The sign bit of v is one

assume(v <=_u c): Transfer the known high zero bits

assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
                 of 2, transfer one more)

A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.

llvm-svn: 217343
2014-09-07 19:21:07 +00:00
Hal Finkel
f8bb9b78cf Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

llvm-svn: 217342
2014-09-07 18:57:58 +00:00
Hal Finkel
6122fb79cb Add an Assumption-Tracking Pass
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.

The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.

There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.

This pass will be used by follow-up commits that make use of @llvm.assume.

llvm-svn: 217334
2014-09-07 12:44:26 +00:00
David Majnemer
86e601dd42 InstCombine: Remove a special case pattern
The special case did not work when run under -reassociate and can easily
be expressed by a further generalization of an existing pattern.

llvm-svn: 217227
2014-09-05 06:09:24 +00:00
David Majnemer
b6abbc640c Revert "Revert two GEP-related InstCombine commits"
This reverts commit r216698 which reverted r216523 and r216598.

We would attempt to perform the transformation even if the match()
failed because, as a side effect, it would set V.  This would trick us
into believing that we correctly found a place to correctly apply the
transform.

An additional test case was added to getelementptr.ll so that we might
not regress in the future.

llvm-svn: 216890
2014-09-01 21:10:02 +00:00
David Majnemer
114418805a InstCombine: Respect recursion depth in visitUDivOperand
llvm-svn: 216817
2014-08-30 09:19:05 +00:00
David Majnemer
5cf3ee996f InstCombine: Try harder to combine icmp instructions
consider: (and (icmp X, Y), (and Z, (icmp A, B)))
It may be possible to combine (icmp X, Y) with (icmp A, B).
If we successfully combine, create an 'and' instruction with Z.

This fixes PR20814.

N.B. There is room for improvement after this change but I'm not
convinced it's worth chasing yet.

llvm-svn: 216814
2014-08-30 06:18:20 +00:00
David Majnemer
02f74ee06a Revert two GEP-related InstCombine commits
This reverts commit r216523 and r216598; people have reported
regressions.

llvm-svn: 216698
2014-08-29 00:06:43 +00:00
David Majnemer
1405bb84da InstCombine: Remove redundant combines
InstSimplify already handles icmp (X+Y), X (and things like it)
appropriately.  The first thing that InstCombine does is run
InstSimplify on the instruction.

llvm-svn: 216659
2014-08-28 10:08:37 +00:00
David Majnemer
e48fe8e34c InstSimplify: Move a transform from InstCombine to InstSimplify
Several combines involving icmp (shl C2, %X) C1 can be simplified
without introducing any new instructions.  Move them to InstSimplify;
while we are at it, make them more powerful.

llvm-svn: 216642
2014-08-28 03:34:28 +00:00
David Majnemer
fd14299661 InstCombine: Combine gep X, (Y-X) to Y
We try to perform this transform in InstSimplify but we aren't always
able to.  Sometimes, we need to insert a bitcast if X and Y don't have
the same time.

llvm-svn: 216598
2014-08-27 20:08:37 +00:00
Craig Topper
43cee2f5fc Simplify creation of a bunch of ArrayRefs by using None, makeArrayRef or just letting them be implicitly created.
llvm-svn: 216525
2014-08-27 05:25:25 +00:00
David Majnemer
826f5eb297 InstCombine: Optimize GEP's involving ptrtoint better
We supported transforming:
(gep i8* X, -(ptrtoint Y))

to:
(inttoptr (sub (ptrtoint X), (ptrtoint Y)))

However, this only fired if 'X' had type i8*.  Generalize this to
support various types of different sizes.  This results in much better
CodeGen, especially for pointers to packed structs.

llvm-svn: 216523
2014-08-27 05:16:04 +00:00
Dinesh Dwivedi
1b0080d8e1 This patch enables SimplifyUsingDistributiveLaws() to handle following pattens.
(X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
(X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
(X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.

These patterns were previously handled separately in visitAnd()/visitOr()/visitXor().

Differential Revision: http://reviews.llvm.org/D4951

llvm-svn: 216443
2014-08-26 08:53:32 +00:00
David Majnemer
5a9ece39af InstCombine: Properly optimize or'ing bittests together
CFE, with -03, would turn:
bool f(unsigned x) {
  bool a = x & 1;
  bool b = x & 2;
  return a | b;
}

into:
  %1 = lshr i32 %x, 1
  %2 = or i32 %1, %x
  %3 = and i32 %2, 1
  %4 = icmp ne i32 %3, 0

This sort of thing exposes a nasty pathology in GCC, ICC and LLVM.

Instead, we would rather want:
  %1 = and i32 %x, 3
  %2 = icmp ne i32 %1, 0

Things get a bit more interesting in the following case:
  %1 = lshr i32 %x, %y
  %2 = or i32 %1, %x
  %3 = and i32 %2, 1
  %4 = icmp ne i32 %3, 0

Replacing it with the following sequence is better:
  %1 = shl nuw i32 1, %y
  %2 = or i32 %1, 1
  %3 = and i32 %2, %x
  %4 = icmp ne i32 %3, 0

This sequence is preferable because %1 doesn't involve %x and could
potentially be hoisted out of loops if it is invariant; only perform
this transform in the non-constant case if we know we won't increase
register pressure.

llvm-svn: 216343
2014-08-24 09:10:57 +00:00
David Majnemer
c3f263a712 InstCombine: Don't unconditionally preserve 'nuw' when shrinking constants
Consider:
  %add = add nuw i32 %a, -16777216
  %and = and i32 %add, 255

Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nuw' from the
instruction.

llvm-svn: 216273
2014-08-22 17:11:04 +00:00
David Majnemer
eb5b0c09b7 InstCombine: sub nsw %x, C -> add nsw %x, -C if C isn't INT_MIN
We can preserve nsw during this transform if -C won't overflow.

llvm-svn: 216269
2014-08-22 16:41:23 +00:00
David Majnemer
9edeeb29d3 InstCombine: Don't unconditionally preserve 'nsw' when shrinking constants
Consider:
  %add = add nsw i32 %a, -16777216
  %and = and i32 %add, 255

Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nsw' from the
instruction.

This fixes PR20377.

llvm-svn: 216261
2014-08-22 07:56:32 +00:00
Craig Topper
65775cc03d Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 216158
2014-08-21 05:55:13 +00:00
David Majnemer
fb4e6230cf InstCombine: Fold ((A | B) & C1) ^ (B & C2) -> (A & C1) ^ B if C1^C2=-1
Adapted from a patch by Richard Smith, test-case written by me.

llvm-svn: 216157
2014-08-21 05:14:48 +00:00
Yi Jiang
aee2472606 New InstCombine pattern: (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) to (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) under certain condition
llvm-svn: 216135
2014-08-20 22:55:40 +00:00
David Majnemer
03fa77d0ce InstCombine: Annotate sub with nuw when we prove it's safe
We can prove that a 'sub' can be a 'sub nuw' if the left-hand side is
negative and the right-hand side is non-negative.

llvm-svn: 216045
2014-08-20 07:17:31 +00:00
David Majnemer
b02f8f16bc InstCombine: Annotate sub with nsw when we prove it's safe
We can prove that a 'sub' can be a 'sub nsw' under certain conditions:
- The sign bits of the operands is the same.
- Both operands have more than 1 sign bit.

The subtraction cannot be a signed overflow in either case.

llvm-svn: 216037
2014-08-19 23:36:30 +00:00
Mayur Pandey
2a3606586c InstCombine: ((A & ~B) ^ (~A & B)) to A ^ B
Proof using CVC3 follows:
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR((A & ~B),(~A & B)) = BVXOR(A,B);
$ cvc3 t.cvc
Valid.

Differential Revision: http://reviews.llvm.org/D4898

llvm-svn: 215974
2014-08-19 08:19:19 +00:00
Mayur Pandey
720f33cd8e test commit (spelling correction)
llvm-svn: 215970
2014-08-19 06:41:55 +00:00
Craig Topper
aa7422b5a6 Revert "Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size."
Getting a weird buildbot failure that I need to investigate.

llvm-svn: 215870
2014-08-18 00:24:38 +00:00
Craig Topper
227456e133 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 215868
2014-08-17 23:47:00 +00:00
Owen Anderson
7bafde2a45 Remove an InstCombine that transformed patterns like (x * uitofp i1 y) to (select y, x, 0.0) when the multiply has fast math flags set.
While this might seem like an obvious canonicalization, there is one subtle problem with it.  The result of the original expression
is undef when x is NaN (remember, fast math flags), but the result of the select is always defined when x is NaN.  This means that the
new expression is strictly more defined than the original one.  One unfortunate consequence of this is that the transform is not reversible!
It's always legal to make increase the defined-ness of an expression, but it's not legal to reduce it.  Thus, targets that prefer the original
form of the expression cannot reverse the transform to recover it.  Another way to think of it is that the transform has lost source-level
information (the fast math flags), which is undesirable.

llvm-svn: 215825
2014-08-17 03:51:29 +00:00
David Majnemer
ec576cc6dc InstCombine: Fix a potential bug in 0 - (X sdiv C) -> (X sdiv -C)
While *most* (X sdiv 1) operations will get caught by InstSimplify, it
is still possible for a sdiv to appear in the worklist which hasn't been
simplified yet.

This means that it is possible for 0 - (X sdiv 1) to get transformed
into (X sdiv -1); dividing by -1 can make the transform produce undef
values instead of the proper result.

Sorry for the lack of testcase, it's a bit problematic because it relies
on the exact order of operations in the worklist.

llvm-svn: 215818
2014-08-16 09:23:42 +00:00
David Majnemer
797c585502 InstCombine: Combine mul with div.
We can combne a mul with a div if one of the operands is a multiple of
the other:

%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
  =>
%ret = mul nsw %a, (C1 / C2)

This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.

Consider this small example:

define i32 @f(i32 %a) {
  %mul = mul nuw i32 %a, 14
  %div = udiv exact i32 %mul, 7
  ret i32 %div
}

which gets CodeGen'd to:

    imull       $14, %edi, %eax
    imulq       $613566757, %rax, %rcx
    shrq        $32, %rcx
    subl        %ecx, %eax
    shrl        %eax
    addl        %ecx, %eax
    shrl        $2, %eax
    retq

We can now transform this into:
define i32 @f(i32 %a) {
  %shl = shl nuw i32 %a, 1
  ret i32 %shl
}

which gets CodeGen'd to:

    leal        (%rdi,%rdi), %eax
    retq

This fixes PR20681.

llvm-svn: 215815
2014-08-16 08:55:06 +00:00
David Majnemer
8e04706b9d InstCombine: ((A | ~B) ^ (~A | B)) to A ^ B
Proof using CVC3 follows:
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR((A | ~B),(~A |B)) = BVXOR(A,B);
$ cvc3 t.cvc
Valid.

Patch by Mayur Pandey!

Differential Revision: http://reviews.llvm.org/D4883

llvm-svn: 215621
2014-08-14 06:46:25 +00:00
David Majnemer
a878644a06 Added InstCombine Transform for ((B | C) & A) | B -> B | (A & C)
Transform ((B | C) & A) | B --> B | (A & C)

Z3 Link: http://rise4fun.com/Z3/hP6p

Patch by Sonam Kumari!

Differential Revision: http://reviews.llvm.org/D4865

llvm-svn: 215619
2014-08-14 06:41:38 +00:00
Benjamin Kramer
da144ed5a2 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

llvm-svn: 215558
2014-08-13 16:26:38 +00:00
Karthik Bhat
d8ea66ecbf InstCombine: Combine (xor (or %a, %b) (xor %a, %b)) to (add %a, %b)
Correctness proof of the transform using CVC3-

$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR(A | B, BVXOR(A,B) ) = A & B;

$ cvc3 t.cvc
Valid.

llvm-svn: 215524
2014-08-13 05:13:14 +00:00
Matt Arsenault
9822384258 Allwo bitcast + struct GEP transform to work with addrspacecast
llvm-svn: 215467
2014-08-12 19:46:13 +00:00
David Majnemer
5a64cc5b28 InstCombine: Combine (add (and %a, %b) (or %a, %b)) to (add %a, %b)
What follows bellow is a correctness proof of the transform using CVC3.

$ < t.cvc
A, B : BITVECTOR(32);

QUERY BVPLUS(32, A & B, A | B) = BVPLUS(32, A, B);

$ cvc3 < t.cvc
Valid.

llvm-svn: 215400
2014-08-11 22:32:02 +00:00
Suyog Sarda
2935dc4c7e This patch implements transform for pattern "(A & ~B) ^ (~A) -> ~(A & B)".
Differential Revision: http://reviews.llvm.org/D4653

llvm-svn: 214479
2014-08-01 05:07:20 +00:00
Suyog Sarda
8e372e5c2f This patch implements transform for pattern "(A | B) & ((~A) ^ B) -> (A & B)".
Differential Revision: http://reviews.llvm.org/D4628

llvm-svn: 214478
2014-08-01 04:59:26 +00:00
Suyog Sarda
e84d4ba7d3 This patch implements transform for pattern "( A & (~B)) | (A ^ B) -> (A ^ B)"
Differential Revision: http://reviews.llvm.org/D4652

llvm-svn: 214477
2014-08-01 04:50:31 +00:00
Suyog Sarda
b8765dbda2 This patch implements transform for pattern "(A & B) | ((~A) ^ B) -> (~A ^ B)".
Patch Credit to Ankit Jain !

Differential Revision: http://reviews.llvm.org/D4655

llvm-svn: 214476
2014-08-01 04:41:43 +00:00
David Majnemer
066fbe5798 InstCombine: Correctly propagate NSW/NUW for x-(-A) -> x+A
We can only propagate the nsw bits if both subtraction instructions are
marked with the appropriate bit.

N.B.  We only propagate the nsw bit in InstCombine because the nuw case
is already handled in InstSimplify.

This fixes PR20189.

llvm-svn: 214385
2014-07-31 04:49:29 +00:00
David Majnemer
994e0d02b9 InstCombine: Simplify (A ^ B) or/and (A ^ B ^ C)
While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B).  Our existing patterns fail once
this happens.

To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.

What follows bellow is a correctness proof of the transform using CVC3.

$ cat t.cvc
A, B, C : BITVECTOR(64);

QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;

QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;

$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.

llvm-svn: 214342
2014-07-30 21:26:37 +00:00
Hal Finkel
a14227ff6e Canonicalization for @llvm.assume
Adds simple logical canonicalization of assumption intrinsics to instcombine,
currently:
 - invariant(a && b) -> invariant(a); invariant(b)
 - invariant(!(a || b)) -> invariant(!a); invariant(!b)

llvm-svn: 213977
2014-07-25 21:45:17 +00:00
Hal Finkel
9be4aefa57 AA metadata refactoring (introduce AAMDNodes)
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).

This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.

No functionality change intended.

llvm-svn: 213859
2014-07-24 12:16:19 +00:00
Suyog Sarda
959fecbe70 This patch implements optimization as mentioned in PR19753: Optimize comparisons with "ashr/lshr exact" of a constanst.
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.

It implements : 
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))

Differential Revision: http://reviews.llvm.org/D4068
 

llvm-svn: 213678
2014-07-22 19:19:36 +00:00
Suyog Sarda
2092947078 Added InstCombine transform for pattern "(A & B) ^ (A ^ B) -> (A | B)"
Patch idea by Ankit Jain !

Differential Revision: http://reviews.llvm.org/D4618

llvm-svn: 213677
2014-07-22 18:30:54 +00:00