1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
Commit Graph

5619 Commits

Author SHA1 Message Date
Reid Kleckner
6b2145b9c9 Win64 SEH: Emit the constant 1 for catch-all into xdata
llvm-svn: 226767
2015-01-22 02:27:44 +00:00
Simon Pilgrim
c666c3a4b2 [X86][SSE] Missing SSE/AVX1 memory folding integer instructions
Added most of the missing integer vector folding patterns for SSE (to SSE42) and AVX1.

The most useful of these are probably the i32/i64 extraction, i8/i16/i32/i64 insertions, zero/sign extension, unsigned saturation subtractions, i64 subtractions and the variable mask blends (pblendvb) - others include CLMUL, SSE42 string comparisons and bit tests.

Differential Revision: http://reviews.llvm.org/D7094

llvm-svn: 226745
2015-01-21 23:43:30 +00:00
Tim Northover
5b0e908c64 DAGCombine: fold (or (and X, M), (and X, N)) -> (and X, (or M, N))
It can help with argument juggling on some targets, and is generally a good
idea.

llvm-svn: 226740
2015-01-21 23:17:19 +00:00
Simon Pilgrim
b377a5e42b [X86][SSE] Added support for SSE3 lane duplication shuffle instructions
This patch adds shuffle matching for the SSE3 MOVDDUP, MOVSLDUP and MOVSHDUP instructions. The big use of these being that they avoid many single source shuffles from needing to use (pre-AVX) dual source instructions such as SHUFPD/SHUFPS: causing extra moves and preventing load folds.

Adding these instructions uncovered an issue in XFormVExtractWithShuffleIntoLoad which crashed on single operand shuffle instructions (now fixed). It also involved fixing getTargetShuffleMask to correctly identify theses instructions as unary shuffles.

Also adds a missing tablegen pattern for MOVDDUP.

Differential Revision: http://reviews.llvm.org/D7042

llvm-svn: 226716
2015-01-21 22:44:35 +00:00
Ahmed Bougacha
aea688cba4 [X86] Declare SSE4.1/AVX2 vector extloads covered by PMOV[SZ]X legal.
Now that we can fully specify extload legality, we can declare them
legal for the PMOVSX/PMOVZX instructions.  This for instance enables
a DAGCombine to fire on code such as
  (and (<zextload-equivalent> ...), <redundant mask>)
to turn it into:
  (zextload ...)
as seen in the testcase changes.

There is one regression, in widen_load-2.ll: we're no longer able
to do store-to-load forwarding with illegal extload memory types.
This will be addressed separately.

Differential Revision: http://reviews.llvm.org/D6533

llvm-svn: 226676
2015-01-21 17:07:06 +00:00
Tim Northover
c2963c8019 Revert "DAGCombine: fold (or (and X, M), (and X, N)) -> (and X, (or M, N))"
It hadn't gone through review yet, but was still on my local copy.

This reverts commit r226663

llvm-svn: 226665
2015-01-21 15:48:52 +00:00
Tim Northover
c9cc73b336 DAGCombine: fold (or (and X, M), (and X, N)) -> (and X, (or M, N))
llvm-svn: 226663
2015-01-21 15:43:28 +00:00
Michael Kuperstein
de439866fe [x32] Fast ISel should use LEA64_32r instead of LEA32r to adjust addresses in x32 mode.
llvm-svn: 226661
2015-01-21 14:44:05 +00:00
Simon Pilgrim
c9bbf23dd5 [X86][AVX] Simplified diff between AVX1 and SSE42 fp stack folding tests. NFC.
Changed the AVX1 tests register spill tail call to return a xmm like the SSE42 version - makes doing diffs between them a lot easier without affecting the spills themselves.

llvm-svn: 226623
2015-01-21 00:02:13 +00:00
Simon Pilgrim
0a0d5a1258 [X86][SSE] Added SSE/AVX1 integer stack folding tests.
Some folding patterns + tests are missing (marked as TODO) - these will be added in a future patch for review.

llvm-svn: 226622
2015-01-20 23:54:17 +00:00
Simon Pilgrim
b7181278f0 [X86][SSE] Added SSE fp stack folding tests.
Some folding patterns + tests are missing (marked as TODO) - these will be added in a future patch for review.

llvm-svn: 226621
2015-01-20 23:50:18 +00:00
Simon Pilgrim
e35020a95e [X86][AVX] Renamed AVX1 fp stack folding tests. NFC.
The SSE42 version of the AVX1 float stack folding tests will be added shortly, this renames the AVX1 file so that the files will be near each other in a directory listing to help ensure they are kept in sync.

llvm-svn: 226620
2015-01-20 23:45:50 +00:00
Daniel Jasper
5a3e345e1b Prevent binary-tree deterioration in sparse switch statements.
This addresses part of llvm.org/PR22262. Specifically, it prevents
considering the densities of sub-ranges that have fewer than
TLI.getMinimumJumpTableEntries() elements. Those densities won't help
jump tables.

This is not a complete solution but works around the most pressing
issue.

Review: http://reviews.llvm.org/D7070
llvm-svn: 226600
2015-01-20 19:43:33 +00:00
Ramkumar Ramachandra
78c0138d51 [GC] Verify-pass void vararg functions in gc.statepoint
With the appropriate Verifier changes, exactracting the result out of a
statepoint wrapping a vararg function crashes. However, a void vararg
function works fine: commit this first step.

Differential Revision: http://reviews.llvm.org/D7071

llvm-svn: 226599
2015-01-20 19:42:46 +00:00
Simon Pilgrim
2ea397ac36 [X86][AVX] Missing AVX1 memory folding float instructions
Now that we can create much more exhaustive X86 memory folding tests, this patch adds the missing AVX1/F16C floating point instruction stack foldings we can easily test for including the scalar intrinsics (add, div, max, min, mul, sub), conversions float/int to double, half precision conversions, rounding, dot product and bit test. The patch also adds a couple of obviously missing SSE instructions (more to follow once we have full SSE testing).

Now that scalar folding is working it broke a very old test (2006-10-07-ScalarSSEMiscompile.ll) - this test appears to make no sense as its trying to ensure that a scalar subtraction isn't folded as it 'would zero the top elts of the loaded vector' - this test just appears to be wrong to me.

Differential Revision: http://reviews.llvm.org/D7055

llvm-svn: 226513
2015-01-19 22:40:45 +00:00
Rafael Espindola
004c23be3b Bring r226038 back.
No change in this commit, but clang was changed to also produce trivial comdats when
needed.

Original message:

Don't create new comdats in CodeGen.

This patch stops the implicit creation of comdats during codegen.

Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.

llvm-svn: 226467
2015-01-19 15:16:06 +00:00
Michael Kuperstein
83ab484af5 [MIScheduler] Slightly better handling of constrainLocalCopy when both source and dest are local
This fixes PR21792.

Differential Revision: http://reviews.llvm.org/D6823

llvm-svn: 226433
2015-01-19 07:30:47 +00:00
Simon Pilgrim
c7e9e7d766 [X86][SSE] Added scalar min/max folding tests. NFC.
llvm-svn: 226406
2015-01-18 18:06:23 +00:00
Simon Pilgrim
fe4662d567 [X86][SSE] Added float extract and xmm extract/insert stack folding tests. NFC.
llvm-svn: 226405
2015-01-18 17:04:32 +00:00
Simon Pilgrim
f6df496d0c [X86][SSE] Added scalar conversion stack folding tests. NFC.
llvm-svn: 226404
2015-01-18 16:22:15 +00:00
Simon Pilgrim
5e48e7f807 AVX1 stack folding tests. NFC.
Begun adding more exhaustive tests - all floating point instructions should now be either tested or have placeholders. We do seem to have a number of missing instructions, I will add a patch for review once the remaining working instructions are added.

I'll then move on to SSE tests and then the integer instructions.

llvm-svn: 226400
2015-01-18 12:56:39 +00:00
Mehdi Amini
e119c6afaf Improve DAG combine pass on certain IR vector patterns
Loading 2 2x32-bit float vectors into the bottom half of a 256-bit vector
produced suboptimal code in AVX2 mode with certain IR combinations.

In particular, the IR optimizer folded 2f32 + 2f32 -> 4f32, 4f32 + 4f32
(undef) -> 8f32 into a 2f32 + 2f32 -> 8f32, which seems more canonical,
but then mysteriously generated rather bad code; the movq/movhpd combination
didn't match.

The problem lay in the BUILD_VECTOR optimization path. The 2f32 inputs
would get promoted to 4f32 by the type legalizer, eventually resulting
in a BUILD_VECTOR on two 4f32 into an 8f32. The BUILD_VECTOR then, recognizing
these were both half the output size, concatted them and then produced
a shuffle. However, the resulting concat + shuffle was more complex than
it should be; in the case where the upper half of the output is undef, we
probably want to generate shuffle + concat instead.

This enhancement causes the vector_shuffle combine step to recognize this
suboptimal pattern and correct it. I included it there instead of in BUILD_VECTOR
in case the same suboptimal pattern occurs for other reasons.

This results in the optimizer correctly producing the optimal movq + movhpd
sequence for all three variations on this IR, even with AVX2.

I've included a test case.

Radar link: rdar://problem/19287012
Fix for PR 21943.

From: Fiona Glaser <fglaser@apple.com>
llvm-svn: 226360
2015-01-17 01:35:56 +00:00
Adam Nemet
9fe8c32290 [AVX512] Add intrinsics for masked aligned FP loads and stores
Similar to the unaligned cases.

Test was generated with update_llc_test_checks.py.

Part of <rdar://problem/17688758>

llvm-svn: 226296
2015-01-16 18:50:09 +00:00
Adam Nemet
553d4195e9 [AVX512] Remove trailing whitespaces in this test
llvm-svn: 226295
2015-01-16 18:50:07 +00:00
Andrea Di Biagio
d2869df8d3 [X86][DAG] Disable target specific combine on INSERTPS dag nodes at -O0.
This patch disables target specific combine on X86ISD::INSERTPS dag nodes
if optlevel is CodeGenOpt::None.

The backend currently implements a target specific combine rule that converts
a vector load used by an INSERTPS dag node into a scalar load plus a
scalar_to_vector. This allows ISel to select a single INSERTPSrm instead of
two instructions (i.e. a vector load plus INSERTPSrr).

However, the existing target combine rule on INSERTPS nodes only works under
the assumption that ISel will always be able to match an INSERTPSrm. This is
not true in general at -O0, since the backend only allows folding a load into
the memory operand of an instruction if the optimization level is not
CodeGenOpt::None.

In the example below:

//
__m128 test(__m128 a, __m128 *b) {
  __m128 c = _mm_insert_ps(a, *b, 1 << 6);
  return c;
}
//

Before this patch, at -O0, the backend would have canonicalized the load to 'b'
into a scalar load plus scalar_to_vector. Later on, ISel would have selected an
INSERTPSrr leaving the insertps mask in an inconsistent state:

  movss 4(%rdi), %xmm1
  insertps  $64, %xmm1, %xmm0 # xmm0 = xmm1[1],xmm0[1,2,3].

With this patch, the backend avoids folding the vector load into the operand of
the INSERTPS. The new codegen at -O0 is:

  movaps (%rdi), %xmm1
  insertps  $64, %xmm1, %xmm0 # %xmm1[1],xmm0[1,2,3].

llvm-svn: 226277
2015-01-16 14:55:26 +00:00
Simon Pilgrim
f787eeaa8f [X86] Refactored stack memory folding tests to explicitly force register spilling
The current 'big vectors' stack folded reload testing pattern is very bulky and makes it difficult to test all instructions as big vectors will tend to use only the ymm instruction implementations.

This patch changes the tests to use a nop call that lists explicit xmm registers as sideeffects, with this we can force a partial register spill of the relevant registers and then check that the reload is correctly folded. The asm generated only adds the forced spill, a nop instruction and a couple of extra labels (a fraction of the current approach).

More exhaustive tests will follow shortly, I've added some extra tests (the xmm versions of some of the existing folding tests) as a starting point.

Differential Revision: http://reviews.llvm.org/D6932

llvm-svn: 226264
2015-01-16 09:32:54 +00:00
Timur Iskhodzhanov
6d120e1a54 Revert r226242 - Revert Revert Don't create new comdats in CodeGen
This breaks AddressSanitizer (ninja check-asan) on Windows

llvm-svn: 226251
2015-01-16 08:38:45 +00:00
Rafael Espindola
f1394d41f0 Revert "Revert Don't create new comdats in CodeGen"
This reverts commit r226173, adding r226038 back.

No change in this commit, but clang was changed to also produce trivial comdats for
costructors, destructors and vtables when needed.

Original message:

Don't create new comdats in CodeGen.

This patch stops the implicit creation of comdats during codegen.

Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.

llvm-svn: 226242
2015-01-16 02:22:55 +00:00
Hal Finkel
d48111840e Revert "r226086 - Revert "r226071 - [RegisterCoalescer] Remove copies to reserved registers""
Reapply r226071 with fixes. Two fixes:

 1. We need to manually remove the old and create the new 'deaf defs'
    associated with physical register definitions when we move the definition of
    the physical register from the copy point to the point of the original vreg def.

    This problem was picked up by the machinstr verifier, and could trigger a
    verification failure on test/CodeGen/X86/2009-02-12-DebugInfoVLA.ll, so I've
    turned on the verifier in the tests.

 2. When moving the def point of the phys reg up, we need to make sure that it
    is neither defined nor read in between the two instructions. We don't, however,
    extend the live ranges of phys reg defs to cover uses, so just checking for
    live-range overlap between the pair interval and the phys reg aliases won't
    pick up reads. As a result, we manually iterate over the range and check for
    reads.

    A test soon to be committed to the PowerPC backend will test this change.

Original commit message:

[RegisterCoalescer] Remove copies to reserved registers

This allows the RegisterCoalescer to join "non-flipped" range pairs with a
physical destination register -- which allows the RegisterCoalescer to remove
copies like this:

<vreg> = something (maybe a load, for example)
... (things that don't use PHYSREG)
PHYSREG = COPY <vreg>

(with all of the restrictions normally applied by the RegisterCoalescer: having
compatible register classes, etc. )

Previously, the RegisterCoalescer handled only the opposite case (copying
*from* a physical register). I don't handle the problem fully here, but try to
get the common case where there is only one use of <vreg> (the COPY).

An upcoming commit to the PowerPC backend will make this pattern much more
common on PPC64/ELF systems.

llvm-svn: 226200
2015-01-15 20:32:09 +00:00
Ramkumar Ramachandra
6658c23924 statepoint tests: use statepoint-example gc
Mechanical conversion of statepoint tests to use the example-statepoint
gc.

llvm-svn: 226183
2015-01-15 18:10:44 +00:00
Timur Iskhodzhanov
7b5eababde Revert Don't create new comdats in CodeGen
It breaks AddressSanitizer on Windows.

llvm-svn: 226173
2015-01-15 16:14:34 +00:00
Hal Finkel
0d21c2bfbe Revert "r226071 - [RegisterCoalescer] Remove copies to reserved registers"
Reverting this while I investigate some bad behavior this is causing. As a
possibly-related issue, adding -verify-machineinstrs to one of the test cases
now fails because of this change:

  llc test/CodeGen/X86/2009-02-12-DebugInfoVLA.ll -march=x86-64 -o - -verify-machineinstrs

*** Bad machine code: No instruction at def index ***
- function:    foo
- basic block: BB#0 return (0x10007e21f10) [0B;736B)
- liverange:   [128r,128d:9)[160r,160d:8)[176r,176d:7)[336r,336d:6)[464r,464d:5)[480r,480d:4)[624r,624d:3)[752r,752d:2)[768r,768d:1)[78
4r,784d:0)  0@784r 1@768r 2@752r 3@624r 4@480r 5@464r 6@336r 7@176r 8@160r 9@128r
- register:    %DS
Valno #3 is defined at 624r

*** Bad machine code: Live segment doesn't end at a valid instruction ***
- function:    foo
- basic block: BB#0 return (0x10007e21f10) [0B;736B)
- liverange:   [128r,128d:9)[160r,160d:8)[176r,176d:7)[336r,336d:6)[464r,464d:5)[480r,480d:4)[624r,624d:3)[752r,752d:2)[768r,768d:1)[78
4r,784d:0)  0@784r 1@768r 2@752r 3@624r 4@480r 5@464r 6@336r 7@176r 8@160r 9@128r
- register:    %DS
[624r,624d:3)
LLVM ERROR: Found 2 machine code errors.

where 624r corresponds exactly to the interval combining change:

624B    %RSP<def> = COPY %vreg16; GR64:%vreg16
        Considering merging %vreg16 with %RSP
                RHS = %vreg16 [608r,624r:0)  0@608r
                updated: 608B   %RSP<def> = MOV64rm <fi#3>, 1, %noreg, 0, %noreg; mem:LD8[%saved_stack.1]
        Success: %vreg16 -> %RSP
        Result = %RSP

llvm-svn: 226086
2015-01-15 03:08:59 +00:00
Hal Finkel
a919bf8508 [RegisterCoalescer] Remove copies to reserved registers
This allows the RegisterCoalescer to join "non-flipped" range pairs with a
physical destination register -- which allows the RegisterCoalescer to remove
copies like this:

<vreg> = something (maybe a load, for example)
... (things that don't use PHYSREG)
PHYSREG = COPY <vreg>

(with all of the restrictions normally applied by the RegisterCoalescer: having
compatible register classes, etc. )

Previously, the RegisterCoalescer handled only the opposite case (copying
*from* a physical register). I don't handle the problem fully here, but try to
get the common case where there is only one use of <vreg> (the COPY).

An upcoming commit to the PowerPC backend will make this pattern much more
common on PPC64/ELF systems.

llvm-svn: 226071
2015-01-15 01:25:28 +00:00
Duncan P. N. Exon Smith
4a5feedcaa IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

llvm-svn: 226048
2015-01-14 22:27:36 +00:00
Rafael Espindola
80f6c3cd98 Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.

Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.

llvm-svn: 226038
2015-01-14 20:55:48 +00:00
Chandler Carruth
ba862f13cb [MBP] Add flags to disable the BadCFGConflict check in MachineBlockPlacement.
Some benchmarks have shown that this could lead to a potential
performance benefit, and so adding some flags to try to help measure the
difference.

A possible explanation. In diamond-shaped CFGs (A followed by either
B or C both followed by D), putting B and C both in between A and
D leads to the code being less dense than it could be. Always either
B or C have to be skipped increasing the chance of cache misses etc.
Moving either B or C to after D might be beneficial on average.

In the long run, but we should probably do a better job of analyzing the
basic block and branch probabilities to move the correct one of B or
C to after D. But even if we don't use this in the long run, it is
a good baseline for benchmarking.

Original patch authored by Daniel Jasper with test tweaks and a second
flag added by me.

Differential Revision: http://reviews.llvm.org/D6969

llvm-svn: 226034
2015-01-14 20:19:29 +00:00
JF Bastien
6c7aa853bb Revert "Insert random noops to increase security against ROP attacks (llvm)"
This reverts commit:
http://reviews.llvm.org/D3392

llvm-svn: 225948
2015-01-14 05:24:33 +00:00
NAKAMURA Takumi
dbaf514823 Disable a couple of tests, CodeGen/X86/noop-insert.ll and CodeGen/X86/noop-insert-percentage.ll, in r225908, to unbreak tests.
llvm-svn: 225940
2015-01-14 04:21:33 +00:00
JF Bastien
c2f3b58bb0 Insert random noops to increase security against ROP attacks (llvm)
A pass that adds random noops to X86 binaries to introduce diversity with the goal of increasing security against most return-oriented programming attacks.

Command line options:
  -noop-insertion // Enable noop insertion.
  -noop-insertion-percentage=X // X% of assembly instructions will have a noop prepended (default: 50%, requires -noop-insertion)
  -max-noops-per-instruction=X // Randomly generate X noops per instruction. ie. roll the dice X times with probability set above (default: 1). This doesn't guarantee X noop instructions.

In addition, the following 'quick switch' in clang enables basic diversity using default settings (currently: noop insertion and schedule randomization; it is intended to be extended in the future).
  -fdiversify

This is the llvm part of the patch.
clang part: D3393

http://reviews.llvm.org/D3392
Patch by Stephen Crane (@rinon)

llvm-svn: 225908
2015-01-14 01:07:26 +00:00
Reid Kleckner
b190c8f871 CodeGen support for x86_64 SEH catch handlers in LLVM
This adds handling for ExceptionHandling::MSVC, used by the
x86_64-pc-windows-msvc triple. It assumes that filter functions have
already been outlined in either the frontend or the backend. Filter
functions are used in place of the landingpad catch clause type info
operands. In catch clause order, the first filter to return true will
catch the exception.

The C specific handler table expects the landing pad to be split into
one block per handler, but LLVM IR uses a single landing pad for all
possible unwind actions. This patch papers over the mismatch by
synthesizing single instruction BBs for every catch clause to fill in
the EH selector that the landing pad block expects.

Missing functionality:
- Accessing data in the parent frame from outlined filters
- Cleanups (from __finally) are unsupported, as they will require
  outlining and parent frame access
- Filter clauses are unsupported, as there's no clear analogue in SEH

In other words, this is the minimal set of changes needed to write IR to
catch arbitrary exceptions and resume normal execution.

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6300

llvm-svn: 225904
2015-01-14 01:05:27 +00:00
Adam Nemet
0795f8999d [AVX512] Add 16x32 unpck tests as well
Forgot this from r225838.

llvm-svn: 225850
2015-01-13 23:27:55 +00:00
Adam Nemet
847eb51105 Fix function names in tests from r225838.
llvm-svn: 225840
2015-01-13 22:40:15 +00:00
Adam Nemet
1859ba1d79 [AVX512] Unpack support in new shuffle lowering
This now handles both 32 and 64-bit element sizes.

In this version, the test are in vector-shuffle-512-v8.ll, canonicalized by
Chandler's update_llc_test_checks.py.

Part of <rdar://problem/17688758>

llvm-svn: 225838
2015-01-13 22:20:18 +00:00
Reid Kleckner
033ced7470 Rename llvm.recoverframeallocation to llvm.framerecover
This name is less descriptive, but it sort of puts things in the
'llvm.frame...' namespace, relating it to frameallocate and
frameaddress. It also avoids using "allocate" and "allocation" together.

llvm-svn: 225752
2015-01-13 01:51:34 +00:00
Reid Kleckner
002e480f22 Add the llvm.frameallocate and llvm.recoverframeallocation intrinsics
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.

Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.

These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.

Reviewers: echristo, andrew.w.kaylor

Differential Revision: http://reviews.llvm.org/D6493

llvm-svn: 225746
2015-01-13 00:48:10 +00:00
Reid Kleckner
2b47fc9382 musttail: Only set the inreg flag for fastcall and vectorcall
Otherwise we'll attempt to forward ECX, EDX, and EAX for cdecl and
stdcall thunks, leaving us with no scratch registers for indirect call
targets.

Fixes PR22052.

llvm-svn: 225729
2015-01-12 23:28:23 +00:00
Ahmed Bougacha
8c30b8debe [X86] Also create+widen FMIN/FMAX nodes for v2f32.
This happens in the HINT benchmark, where the SLP-vectorizer created
v2f32 fcmp/select code.  The "correct" solution would have been to
teach the vectorizer cost model that v2f32 isn't legal (because really,
it isn't), but if we can vectorize we might as well do so.

We legalize these v2f32 FMIN/FMAX nodes by widening to v4f32 later on.
v3f32 were already widened to v4f32 by the generic unroll-and-build-vector
legalization.

rdar://15763436
Differential Revision: http://reviews.llvm.org/D6557

llvm-svn: 225691
2015-01-12 20:31:30 +00:00
Ahmed Bougacha
369ae03621 [X86] Make SSE min/max testcases more explicit. NFC.
llvm-svn: 225687
2015-01-12 20:15:47 +00:00
David Majnemer
3153df330a Revert most of r225597
We can't rely on a DataLayout enlightened constant folder.

llvm-svn: 225599
2015-01-11 07:29:51 +00:00
David Majnemer
030393ac1e X86: Properly decode shuffle masks when the constant pool type is weird
It's possible for the constant pool entry for the shuffle mask to come
from a completely different operation.  This occurs when Constants have
the same bit pattern but have different types.

Make DecodePSHUFBMask tolerant of types which, after a bitcast, are
appropriately sized vector types.

This fixes PR22188.

llvm-svn: 225597
2015-01-11 05:08:57 +00:00
Saleem Abdulrasool
7d9a7afdb1 X86: teach X86TargetLowering about L,M,O constraints
Teach the ISelLowering for X86 about the L,M,O target specific constraints.
Although, for the moment, clang performs constraint validation and prevents
passing along inline asm which may have immediate constant constraints violated,
the backend should be able to cope with the invalid inline asm a bit better.

llvm-svn: 225596
2015-01-11 04:39:24 +00:00
Chandler Carruth
2da477ebfb [x86] Remove some windows line endings that snuck into the tests here.
Folks on Windows, remember to set up your subversion to strip these when
submitting...

llvm-svn: 225593
2015-01-11 01:36:20 +00:00
Sanjoy Das
f93f60b30a Fix PR22179.
We were incorrectly inferring nsw for certain SCEVs. We can be more
aggressive here (see Richard Smith's comment on
http://llvm.org/bugs/show_bug.cgi?id=22179) but this change just
focuses on correctness.

Differential Revision: http://reviews.llvm.org/D6914

llvm-svn: 225591
2015-01-10 23:41:24 +00:00
Simon Pilgrim
0737d28010 [X86][SSE] Improved (v)insertps shuffle matching
In the current code we only attempt to match against insertps if we have exactly one element from the second input vector, irrespective of how much of the shuffle result is zeroable.

This patch checks to see if there is a single non-zeroable element from either input that requires insertion. It also supports matching of cases where only one of the inputs need to be referenced.

We also split insertps shuffle matching off into a new lowerVectorShuffleAsInsertPS function.

Differential Revision: http://reviews.llvm.org/D6879

llvm-svn: 225589
2015-01-10 19:45:33 +00:00
Simon Pilgrim
02b7bb4769 [X86][SSE] Avoid vector byte shuffles with zero by using pshufb to create zeros
pshufb can shuffle in zero bytes as well as bytes from a source vector - we can use this to avoid having to shuffle 2 vectors and ORing the result when the used inputs from a vector are all zeroable.

Differential Revision: http://reviews.llvm.org/D6878

llvm-svn: 225551
2015-01-09 22:03:19 +00:00
Matthias Braun
e2f9677f81 RegisterCoalescer: Fix removeCopyByCommutingDef with subreg liveness
The code that eliminated additional coalescable copies in
removeCopyByCommutingDef() used MergeValueNumberInto() which internally
may merge A into B or B into A. In this case A and B had different Def
points, so we have to reset ValNo.Def to the intended one after merging.

llvm-svn: 225503
2015-01-09 03:01:31 +00:00
Elena Demikhovsky
9ab7f6e415 Masked Load/Store - fixed a bug in type legalization.
llvm-svn: 225441
2015-01-08 12:29:19 +00:00
Michael Kuperstein
f9bd4536d2 Fix a think-o in the test for r225438.
llvm-svn: 225440
2015-01-08 12:05:02 +00:00
Michael Kuperstein
f890489bdb [X86] Don't try to generate direct calls to TLS globals
The call lowering assumes that if the callee is a global, we want to emit a direct call.
This is correct for regular globals, but not for TLS ones.

Differential Revision: http://reviews.llvm.org/D6862

llvm-svn: 225438
2015-01-08 11:50:58 +00:00
Craig Topper
057e795d39 Fix test case I missed in r225432.
llvm-svn: 225434
2015-01-08 07:57:27 +00:00
Quentin Colombet
41c4d5ee6c [RegAllocGreedy] Introduce a late pass to repair broken hints.
A broken hint is a copy where both ends are assigned different colors. When a
variable gets evicted in the neighborhood of such copies, it is likely we can
reconcile some of them.


** Context **

Copies are inserted during the register allocation via splitting. These split
points are required to relax the constraints on the allocation problem. When
such a point is inserted, both ends of the copy would not share the same color
with respect to the current allocation problem. When variables get evicted,
the allocation problem becomes different and some split point may not be
required anymore. However, the related variables may already have been colored.

This usually shows up in the assembly with pattern like this:
def A
...
save A to B
def A
use A
restore A from B
...
use B

Whereas we could simply have done:
def B
...
def A
use A
...
use B


** Proposed Solution **

A variable having a broken hint is marked for late recoloring if and only if
selecting a register for it evict another variable. Indeed, if no eviction
happens this is pointless to look for recoloring opportunities as it means the
situation was the same as the initial allocation problem where we had to break
the hint.

Finally, when everything has been allocated, we look for recoloring
opportunities for all the identified candidates.
The recoloring is performed very late to rely on accurate copy cost (all
involved variables are allocated).
The recoloring is simple unlike the last change recoloring. It propagates the
color of the broken hint to all its copy-related variables. If the color is
available for them, the recoloring uses it, otherwise it gives up on that hint
even if a more complex coloring would have worked.

The recoloring happens only if it is profitable. The profitability is evaluated
using the expected frequency of the copies of the currently recolored variable
with a) its current color and b) with the target color. If a) is greater or
equal than b), then it is profitable and the recoloring happen.


** Example **

Consider the following example:
BB1:
  a =
  b =
BB2:
  ...
   = b
   = a
Let us assume b gets split:
BB1:
  a =
  b =
BB2:
  c = b
  ...
  d = c
  = d
  = a
Because of how the allocation work, b, c, and d may be assigned different
colors. Now, if a gets evicted to make room for c, assuming b and d were
assigned to something different than a.
We end up with:
BB1:
  a =
  st a, SpillSlot
  b =
BB2:
  c = b
  ...
  d = c
  = d
  e = ld SpillSlot
  = e
This is likely that we can assign the same register for b, c, and d,
getting rid of 2 copies.


** Performances **

Both ARM64 and x86_64 show performance improvements of up to 3% for the
llvm-testsuite + externals with Os and O3. There are a few regressions too that
comes from the (in)accuracy of the block frequency estimate.

<rdar://problem/18312047>

llvm-svn: 225422
2015-01-08 01:16:39 +00:00
Philip Reames
2ad347b060 [GC] improve testing around gc.relocate and fix a test
Patch by: Ramkumar Ramachandra <artagnon@gmail.com>

"This patch started out as an exploration of gc.relocate, and an attempt
to write a simple test in call-lowering. I then noticed that the
arguments of gc.relocate were not checked fully, so I went in and fixed
a few things. Finally, the most important outcome of this patch is that
my new error handling code caught a bug in a callsite in
stackmap-format."

Differential Revision: http://reviews.llvm.org/D6824

llvm-svn: 225412
2015-01-07 22:48:01 +00:00
Philip Reames
813212cde9 Introduce an example statepoint GC strategy
This change includes the most basic possible GCStrategy for a GC which is using the statepoint lowering code. At the moment, this GCStrategy doesn't really do much - aside from actually generate correct stackmaps that is - but I went ahead and added a few extra correctness checks as proof of concept. It's mostly here to provide documentation on how to do one, and to provide a point for various optimization legality hooks I'd like to add going forward. (For context, see the TODOs in InstCombine around gc.relocate.)

Most of the validation logic added here as proof of concept will soon move in to the Verifier.  That move is dependent on http://reviews.llvm.org/D6811

There was discussion in the review thread about addrspace(1) being reserved for something.  I'm going to follow up on a seperate llvmdev thread.  If needed, I'll update all the code at once.

Note that I am deliberately not making a GCStrategy required to use gc.statepoints with this change. I want to give folks out of tree - including myself - a chance to migrate. In a week or two, I'll make having a GCStrategy be required for gc.statepoints. To this end, I added the gc tag to one of the test cases but not others.

Differential Revision: http://reviews.llvm.org/D6808

llvm-svn: 225365
2015-01-07 19:07:50 +00:00
David Majnemer
84c4bd1a4c X86: Allow the stack probe size to be configurable per function
LLVM emits stack probes on Windows targets to ensure that the stack is
correctly accessed.  However, the amount of stack allocated before
emitting such a probe is hardcoded to 4096.

It is desirable to have this be configurable so that a function might
opt-out of stack probes.  Our level of granularity is at the function
level instead of, say, the module level to permit proper generation of
code after LTO.

Patch by Andrew H!

N.B.  The inliner needs to be updated to properly consider what happens
after inlining a function with a specific stack-probe-size into another
function with a different stack-probe-size.

llvm-svn: 225360
2015-01-07 18:14:07 +00:00
Ahmed Bougacha
cb2ee2e772 [X86] Teach FCOPYSIGN lowering to recognize constant magnitudes.
For code like:
    float foo(float x) { return copysign(1.0, x); }
We used to generate:
    andps  <-0.000000e+00,0,0,0>, %xmm0
    movss  <1.000000e+00>, %xmm1
    andps  <nan>, %xmm1
    orps   %xmm0, %xmm1
Basically doing an abs(1.0f) in the two middle instructions.

We now generate:
    andps  <-0.000000e+00,0,0,0>, %xmm0
    orps   <1.000000e+00,0,0,0>, %xmm0

Builds on cleanups r223415, r223542.
rdar://19049548
Differential Revision: http://reviews.llvm.org/D6555

llvm-svn: 225357
2015-01-07 17:33:03 +00:00
Rafael Espindola
20dc6c7571 Change the .ll syntax for comdats and add a syntactic sugar.
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.

Just dropping the $name causes problems for

@foo = globabl i32 0, comdat
$bar = comdat ...

and

declare void @foo() comdat
$bar = comdat ...

So the syntax is changed to

@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat

and

declare void @foo() comdat($c1)
declare void @foo() comdat

llvm-svn: 225302
2015-01-06 22:55:16 +00:00
Andrea Di Biagio
83f99b8d3f [CodeGenPrepare] Improved logic to speculate calls to cttz/ctlz.
This patch improves the logic added at revision 224899 (see review D6728) that
teaches the backend when it is profitable to speculate calls to cttz/ctlz.

The original algorithm conservatively avoided speculating more than one
instruction from a basic block in a control flow grap modelling an if-statement.
In particular, the only allowed instruction (excluding the terminator) was a
call to cttz/ctlz. However, there are cases where we could be less conservative
and still be able to speculate a call to cttz/ctlz.

With this patch, CodeGenPrepare now tries to speculate a cttz/ctlz if the
result is zero extended/truncated in the same basic block, and the zext/trunc
instruction is "free" for the target.

Added new test cases to CodeGen/X86/cttz-ctlz.ll

Differential Revision: http://reviews.llvm.org/D6853

llvm-svn: 225274
2015-01-06 17:41:18 +00:00
David Majnemer
8bb88f79fa X86: Don't make illegal GOTTPOFF relocations
"ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
relocation target a movq or addq instruction.

Prohibit the truncation of such loads to movl or addl.

This fixes PR22083.

Differential Revision: http://reviews.llvm.org/D6839

llvm-svn: 225250
2015-01-06 07:12:52 +00:00
Simon Pilgrim
449336c7d0 [X86][SSE] Added vector packing test for pr12412
llvm-svn: 225138
2015-01-04 19:08:03 +00:00
Simon Pilgrim
eb7bab72dc [X86][SSE] Added vector integer truncation tests - based off pr15524
llvm-svn: 225137
2015-01-04 17:52:00 +00:00
Alexey Samsonov
4caafc0c9a Revert "merge consecutive stores of extracted vector elements"
This reverts commit r224611. This change causes crashes
in X86 DAG->DAG Instruction Selection.

llvm-svn: 225031
2014-12-31 00:40:28 +00:00
Peter Collingbourne
adf669ef17 x86_64: Fix calls to __morestack under the large code model.
Under the large code model, we cannot assume that __morestack lives within
2^31 bytes of the call site, so we cannot use pc-relative addressing. We
cannot perform the call via a temporary register, as the rax register may
be used to store the static chain, and all other suitable registers may be
either callee-save or used for parameter passing. We cannot use the stack
at this point either because __morestack manipulates the stack directly.

To avoid these issues, perform an indirect call via a read-only memory
location containing the address.

This solution is not perfect, as it assumes that the .rodata section
is laid out within 2^31 bytes of each function body, but this seems to
be sufficient for JIT.

Differential Revision: http://reviews.llvm.org/D6787

llvm-svn: 225003
2014-12-30 20:05:19 +00:00
Philip Reames
24e52a9bf0 Semantic tests for memory invalidation at statepoints
These are simply a collection of tests intended to show that information about the contents of gc references in the heap is lost at a statepoint. I've tried to write them so that they don't disallow correct transformations, while still being fairly easy to understand.

p.s. Ideas for additional tests are welcome.

Differential Revision: http://reviews.llvm.org/D6491

llvm-svn: 224971
2014-12-29 23:55:33 +00:00
Rafael Espindola
d79b2a88d2 Add segmented stack support for DragonFlyBSD.
Patch by Michael Neumann.

llvm-svn: 224936
2014-12-29 15:47:28 +00:00
NAKAMURA Takumi
30c038d6ac llvm/test/CodeGen/X86/fast-isel-call-bool.ll: Add explicit -mtriple=x86_64-unknown to satisfy x64.
llvm-svn: 224907
2014-12-28 23:37:11 +00:00
Keno Fischer
ccce564b31 [X86][ISel] Fix a regression I introduced in r224884
The else case ResultReg was not checked for validity.
To my surprise, this case was not hit in any of the
existing test cases. This includes a new test cases
that tests this path.

Also drop the `target triple` declaration from the
original test as suggested by H.J. Lu, because
apparently with it the test won't be run on Linux

llvm-svn: 224901
2014-12-28 15:20:57 +00:00
Michael Kuperstein
54698309bd [X86] Add missing memory variants to AVX false dependency breaking
Adds missing memory instruction variants to AVX false dependency breaking handling. (SSE was handled in r224246)

Differential Revision: http://reviews.llvm.org/D6780

llvm-svn: 224900
2014-12-28 13:15:05 +00:00
Andrea Di Biagio
64b0da84f4 [CodeGenPrepare] Teach when it is profitable to speculate calls to @llvm.cttz/ctlz.
If the control flow is modelling an if-statement where the only instruction in
the 'then' basic block (excluding the terminator) is a call to cttz/ctlz,
CodeGenPrepare can try to speculate the cttz/ctlz call and simplify the control
flow graph.

Example:
\code
entry:
  %cmp = icmp eq i64 %val, 0
  br i1 %cmp, label %end.bb, label %then.bb

then.bb:
  %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true)
  br label %end.bb

end.bb:
  %cond = phi i64 [ %c, %then.bb ], [ 64, %entry]
\code

In this example, basic block %then.bb is taken if value %val is not zero.
Also, the phi node in %end.bb would propagate the size-of in bits of %val
only if %val is equal to zero.

With this patch, CodeGenPrepare will try to hoist the call to cttz from %then.bb
into basic block %entry only if cttz is cheap to speculate for the target.

Added two new hooks in TargetLowering.h to let targets customize the behavior
(i.e. decide whether it is cheap or not to speculate calls to cttz/ctlz). The
two new methods are 'isCheapToSpeculateCtlz' and 'isCheapToSpeculateCttz'.
By default, both methods return 'false'.
On X86, method 'isCheapToSpeculateCtlz' returns true only if the target has
LZCNT. Method 'isCheapToSpeculateCttz' only returns true if the target has BMI.

Differential Revision: http://reviews.llvm.org/D6728

llvm-svn: 224899
2014-12-28 11:07:35 +00:00
Elena Demikhovsky
5ba5e3e13d Scalarizer for masked load and store intrinsics.
Masked vector intrinsics are a part of common LLVM IR, but they are really supported on AVX2 and AVX-512 targets. I added a code that translates masked intrinsic for all other targets. The masked vector intrinsic is converted to a chain of scalar operations inside conditional basic blocks.

http://reviews.llvm.org/D6436

llvm-svn: 224897
2014-12-28 08:54:45 +00:00
Keno Fischer
fae085c8f8 [FastIsel][X86] Fix invalid register replacement for bool args
Summary:
Consider the following IR:

  %3 = load i8* undef
  %4 = trunc i8 %3 to i1
  %5 = call %jl_value_t.0* @foo(..., i1 %4, ...)
  ret %jl_value_t.0* %5

Bools (that are the result of direct truncs) are lowered as whatever
the argument to the trunc was and a "and 1", causing the part of the
MBB responsible for this argument to look something like this:

  %vreg8<def,tied1> = AND8ri %vreg7<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg8,%vreg7

Later, when the load is lowered, it will insert

  %vreg15<def> = MOV8rm %vreg14, 1, %noreg, 0, %noreg; mem:LD1[undef] GR8:%vreg15 GR64:%vreg14

but remember to (at the end of isel) replace vreg7 by vreg15. Now for
the bug. In fast isel lowering, we mistakenly mark vreg8 as the result
of the load instead of the trunc. This adds a fixup to have
vreg8 replaced by whatever the result of the load is as well, so
we end up with

  %vreg15<def,tied1> = AND8ri %vreg15<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg15

which is an SSA violation and causes problems later down the road.

This fixes PR21557.

Test Plan: Test test case from PR21557 is added to the test suite.

Reviewers: ributzka

Reviewed By: ributzka

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6245

llvm-svn: 224884
2014-12-27 13:10:15 +00:00
Elena Demikhovsky
4a153fb55a Masked Load/Store - Changed the order of parameters in intrinsics.
No functional changes.
The documentation is coming.

llvm-svn: 224829
2014-12-25 07:49:20 +00:00
David Majnemer
a6677bea10 CodeGen: Error on redefinitions instead of asserting
It's possible to have a prior definition of a symbol in module asm.
Raise an error instead of crashing.

llvm-svn: 224828
2014-12-24 23:06:55 +00:00
David Majnemer
72fa8a7b8d CodeGen: Allow aliases to be overridden by variables
llvm-svn: 224827
2014-12-24 22:44:29 +00:00
David Majnemer
91e6049dc1 MC: Label definitions are permitted after .set directives
.set directives may be overridden by other .set directives as well as
label definitions.

This fixes PR22019.

llvm-svn: 224811
2014-12-24 10:27:50 +00:00
Elena Demikhovsky
bb8ca1f551 AVX-512: Added FMA instructions, intrinsics an tests for KNL and SKX targets
by Asaf Badouh

http://reviews.llvm.org/D6456

llvm-svn: 224764
2014-12-23 10:30:39 +00:00
Elena Demikhovsky
cfbcf5995c AVX-512: BLENDM - fixed encoding of the broadcast version
Added more intrinsics and encoding tests.

llvm-svn: 224760
2014-12-23 09:36:28 +00:00
Michael Kuperstein
81a40a5cbe [DagCombine] Improve DAGCombiner BUILD_VECTOR when it has two sources of elements
This partially fixes PR21943.

For AVX, we go from:

vmovq   (%rsi), %xmm0
vmovq   (%rdi), %xmm1
vpermilps       $-27, %xmm1, %xmm2 ## xmm2 = xmm1[1,1,2,3]
vinsertps       $16, %xmm2, %xmm1, %xmm1 ## xmm1 = xmm1[0],xmm2[0],xmm1[2,3]
vinsertps       $32, %xmm0, %xmm1, %xmm1 ## xmm1 = xmm1[0,1],xmm0[0],xmm1[3]
vpermilps       $-27, %xmm0, %xmm0 ## xmm0 = xmm0[1,1,2,3]
vinsertps       $48, %xmm0, %xmm1, %xmm0 ## xmm0 = xmm1[0,1,2],xmm0[0]

To the expected:

vmovq   (%rdi), %xmm0
vmovhpd (%rsi), %xmm0, %xmm0
retq

Fixing this for AVX2 is still open.

Differential Revision: http://reviews.llvm.org/D6749

llvm-svn: 224759
2014-12-23 08:59:45 +00:00
Jim Grosbach
19c4fa899d X86: Don't over-align combined loads.
When combining consecutive loads+inserts into a single vector load,
we should keep the alignment of the base load. Doing otherwise can, and does,
lead to using overly aligned instructions. In the included test case, for
example, using a 32-byte vmovaps on a 16-byte aligned value. Oops.

rdar://19190968

llvm-svn: 224746
2014-12-23 00:35:23 +00:00
Reid Kleckner
04fe8002a0 Make musttail more robust for vector types on x86
Previously I tried to plug musttail into the existing vararg lowering
code. That turned out to be a mistake, because non-vararg calls use
significantly different register lowering, even on x86. For example, AVX
vectors are usually passed in registers to normal functions and memory
to vararg functions.  Now musttail uses a completely separate lowering.

Hopefully this can be used as the basis for non-x86 perfect forwarding.

Reviewers: majnemer

Differential Revision: http://reviews.llvm.org/D6156

llvm-svn: 224745
2014-12-22 23:58:37 +00:00
Bruno Cardoso Lopes
351f228624 [x86] Add vector @llvm.ctpop intrinsic custom lowering
Currently, when ctpop is supported for scalar types, the expansion of
@llvm.ctpop.vXiY uses vector element extractions, insertions and individual
calls to @llvm.ctpop.iY. When not, expansion with bit-math operations is used
for the scalar calls.

Local haswell measurements show that we can improve vector @llvm.ctpop.vXiY
expansion in some cases by using a using a vector parallel bit twiddling
approach, based on:

v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = ((v + (v >> 4) & 0xF0F0F0F)
v = v + (v >> 8)
v = v + (v >> 16)
v = v & 0x0000003F
(from http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel)

When scalar ctpop isn't supported, the approach above performs better for
v2i64, v4i32, v4i64 and v8i32 (see numbers below). And even when scalar ctpop
is supported, this approach performs ~2x better for v8i32.

Here, x86_64 implies -march=corei7-avx without ctpop and x86_64h includes ctpop
support with -march=core-avx2.

== [x86_64h - new]
v8i32: 0.661685
v4i32: 0.514678
v4i64: 0.652009
v2i64: 0.324289
== [x86_64h - old]
v8i32: 1.29578
v4i32: 0.528807
v4i64: 0.65981
v2i64: 0.330707

== [x86_64 - new]
v8i32: 1.003
v4i32: 0.656273
v4i64: 1.11711
v2i64: 0.754064
== [x86_64 - old]
v8i32: 2.34886
v4i32: 1.72053
v4i64: 1.41086
v2i64: 1.0244

More work for other vector types will come next.

llvm-svn: 224725
2014-12-22 19:45:43 +00:00
Quentin Colombet
c245321b0e [CodeGenPrepare] Handle properly the promotion of operands when this does not
generate instructions.

Fixes PR21978.
Related to <rdar://problem/18310086>

llvm-svn: 224717
2014-12-22 18:11:52 +00:00
Elena Demikhovsky
aeb7ff5f14 AVX-512: Added all forms of BLENDM instructions,
intrinsics, encoding tests for AVX-512F and skx instructions.

llvm-svn: 224707
2014-12-22 13:52:48 +00:00
Matt Arsenault
92400a8e42 Enable (sext x) == C --> x == (trunc C) combine
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.

llvm-svn: 224691
2014-12-21 16:48:42 +00:00
Chandler Carruth
dbb21c0267 [x86] Change the test added in r223774 to first check the spelling of
the error message for a bogus processor, and then look specifically for
that error message using FileCheck.

I actually tried to write the test this way at first, but drew a blank
on how to ensure the error message stayed in sync (oops). Now that I've
recalled how to do that, this is clearly better.

It also fixes an issue with a malloc implementation that actually prints
to stderr in all cases, which was causing problems for some builders it
seems.

llvm-svn: 224665
2014-12-20 02:19:22 +00:00
Elena Demikhovsky
744da8554e Masked load and store codegen - fixed 128-bit vectors
The codegen failed on 128-bit types on AVX2.
I added patterns and in td files and tests.

llvm-svn: 224647
2014-12-19 23:27:57 +00:00
Reid Kleckner
be2f2ecb15 Add the ExceptionHandling::MSVC enumeration
It is intended to be used for a family of personality functions that
have similar IR preparation requirements. Typically when interoperating
with MSVC personality functions, bits of functionality need to be
outlined from the main function into helper functions. There is also
usually more than one landing pad per invoke, which does not match the
LLVM IR landingpad representation.

None of this is implemented yet. This change just adds a new enum that
is active for *-windows-msvc and delegates to the EH removal preparation
pass.  No functionality change for other targets.

llvm-svn: 224625
2014-12-19 22:19:48 +00:00
Sanjay Patel
50aab0bca2 Model sqrtss as a binary operation with one source operand tied to the destination (PR14221)
This is a continuation of r167064 ( http://llvm.org/viewvc/llvm-project?view=revision&revision=167064 ).
That patch started to fix PR14221 ( http://llvm.org/bugs/show_bug.cgi?id=14221 ), but it was not completed. 

Differential Revision: http://reviews.llvm.org/D6330

llvm-svn: 224624
2014-12-19 22:16:28 +00:00
Sanjay Patel
7cfa420ae4 merge consecutive stores of extracted vector elements
Add a path to DAGCombiner::MergeConsecutiveStores() 
to combine multiple scalar stores when the store operands
are extracted vector elements. This is a partial fix for
PR21711 ( http://llvm.org/bugs/show_bug.cgi?id=21711 ).

For the new test case, codegen improves from:

   vmovss  %xmm0, (%rdi)
   vextractps      $1, %xmm0, 4(%rdi)
   vextractps      $2, %xmm0, 8(%rdi)
   vextractps      $3, %xmm0, 12(%rdi)
   vextractf128    $1, %ymm0, %xmm0
   vmovss  %xmm0, 16(%rdi)
   vextractps      $1, %xmm0, 20(%rdi)
   vextractps      $2, %xmm0, 24(%rdi)
   vextractps      $3, %xmm0, 28(%rdi)
   vzeroupper
   retq

To:

   vmovups	%ymm0, (%rdi)
   vzeroupper
   retq

Patch reviewed by Nadav Rotem.

Differential Revision: http://reviews.llvm.org/D6698

llvm-svn: 224611
2014-12-19 20:23:41 +00:00
Robert Khasanov
0bf2db97cb [AVX512] Enable FP arithmetic lowering for AVX512VL subsets.
Added RegOp2MemOpTable4 to transform 4th operand from register to memory in merge-masked versions of instructions. 
Added lowering tests.

llvm-svn: 224516
2014-12-18 12:28:22 +00:00
Timur Iskhodzhanov
2f4f744301 Fix CR/LF line endings in test case
llvm-svn: 224437
2014-12-17 17:52:12 +00:00
Michael Kuperstein
3790301d73 [DAGCombine] Slightly improve lowering of BUILD_VECTOR into a shuffle.
This handles the case of a BUILD_VECTOR being constructed out of elements extracted from a vector twice the size of the result vector. Previously this was always scalarized. Now, we try to construct a shuffle node that feeds on extract_subvectors.

This fixes PR15872 and provides a partial fix for PR21711.

Differential Revision: http://reviews.llvm.org/D6678

llvm-svn: 224429
2014-12-17 12:32:17 +00:00
Quentin Colombet
5896cdb9ff [CodeGenPrepare] Reapply r224351 with a fix for the assertion failure:
The type promotion helper does not support vector type, so when make
such it does not kick in in such cases.

Original commit message:
[CodeGenPrepare] Move sign/zero extensions near loads using type promotion.

This patch extends the optimization in CodeGenPrepare that moves a sign/zero
extension near a load when the target can combine them. The optimization may
promote any operations between the extension and the load to make that possible.

Although this optimization may be beneficial for all targets, in particular
AArch64, this is enabled for X86 only as I have not benchmarked it for other
targets yet.


** Context **

Most targets feature extended loads, i.e., loads that perform a zero or sign
extension for free. In that context it is interesting to expose such pattern in
CodeGenPrepare so that the instruction selection pass can form such loads.
Sometimes, this pattern is blocked because of instructions between the load and
the extension. When those instructions are promotable to the extended type, we
can expose this pattern.


** Motivating Example **

Let us consider an example:
define void @foo(i8* %addr1, i32* %addr2, i8 %a, i32 %b) {
  %ld = load i8* %addr1
  %zextld = zext i8 %ld to i32
  %ld2 = load i32* %addr2
  %add = add nsw i32 %ld2, %zextld
  %sextadd = sext i32 %add to i64
  %zexta = zext i8 %a to i32
  %addza = add nsw i32 %zexta, %zextld
  %sextaddza = sext i32 %addza to i64
  %addb = add nsw i32 %b, %zextld
  %sextaddb = sext i32 %addb to i64
  call void @dummy(i64 %sextadd, i64 %sextaddza, i64 %sextaddb)
  ret void
}

As it is, this IR generates the following assembly on x86_64:
[...]
  movzbl  (%rdi), %eax   # zero-extended load
  movl  (%rsi), %es      # plain load
  addl  %eax, %esi       # 32-bit add
  movslq  %esi, %rdi     # sign extend the result of add
  movzbl  %dl, %edx      # zero extend the first argument
  addl  %eax, %edx       # 32-bit add
  movslq  %edx, %rsi     # sign extend the result of add
  addl  %eax, %ecx       # 32-bit add
  movslq  %ecx, %rdx     # sign extend the result of add
[...]
The throughput of this sequence is 7.45 cycles on Ivy Bridge according to IACA.

Now, by promoting the additions to form more extended loads we would generate:
[...]
  movzbl  (%rdi), %eax   # zero-extended load
  movslq  (%rsi), %rdi   # sign-extended load
  addq  %rax, %rdi       # 64-bit add
  movzbl  %dl, %esi      # zero extend the first argument
  addq  %rax, %rsi       # 64-bit add
  movslq  %ecx, %rdx     # sign extend the second argument
  addq  %rax, %rdx       # 64-bit add
[...]
The throughput of this sequence is 6.15 cycles on Ivy Bridge according to IACA.

This kind of sequences happen a lot on code using 32-bit indexes on 64-bit
architectures.

Note: The throughput numbers are similar on Sandy Bridge and Haswell.


** Proposed Solution **

To avoid the penalty of all these sign/zero extensions, we merge them in the
loads at the beginning of the chain of computation by promoting all the chain of
computation on the extended type. The promotion is done if and only if we do not
introduce new extensions, i.e., if we do not degrade the code quality.
To achieve this, we extend the existing “move ext to load” optimization with the
promotion mechanism introduced to match larger patterns for addressing mode
(r200947).
The idea of this extension is to perform the following transformation:
ext(promotableInst1(...(promotableInstN(load))))
=>
promotedInst1(...(promotedInstN(ext(load))))

The promotion mechanism in that optimization is enabled by a new TargetLowering
switch, which is off by default. In other words, by default, the optimization
performs the “move ext to load” optimization as it was before this patch.


** Performance **

Configuration: x86_64: Ivy Bridge fixed at 2900MHz running OS X 10.10.
Tested Optimization Levels: O3/Os
Tests: llvm-testsuite + externals.
Results:
- No regression beside noise.
- Improvements:
CINT2006/473.astar:  ~2%
Benchmarks/PAQ8p: ~2%
Misc/perlin: ~3%

The results are consistent for both O3 and Os.

<rdar://problem/18310086>

llvm-svn: 224402
2014-12-17 01:36:17 +00:00
Reid Kleckner
b4ee65bf9b Revert "[CodeGenPrepare] Move sign/zero extensions near loads using type promotion."
This reverts commit r224351. It causes assertion failures when building
ICU.

llvm-svn: 224397
2014-12-17 00:29:23 +00:00
Hans Wennborg
37a572f581 SelectionDAG switch lowering: use 'unsigned' to count destination popularity
SwitchInst::getNumCases() returns unsinged, so using uint64_t to count cases
seems unnecessary.

Also fix a missing CHECK in the test case.

llvm-svn: 224393
2014-12-16 23:41:59 +00:00
Sanjay Patel
8f620fe4b0 fix typo, add spaces; NFC
llvm-svn: 224384
2014-12-16 22:48:42 +00:00
Simon Pilgrim
f9bdd6a092 [X86][SSE] Vector double -> float conversion memory folding (cvtpd2ps)
Added a missing memory folding relationship for the (V)CVTPD2PS instruction - we can safely fold these for stack reloads.

Differential Revision: http://reviews.llvm.org/D6663

llvm-svn: 224383
2014-12-16 22:30:10 +00:00
Sanjay Patel
af93d5f15c merge consecutive loads that are offset from a base address
SelectionDAG::isConsecutiveLoad() was not detecting consecutive loads
when the first load was offset from a base address. 

This patch recognizes that pattern and subtracts the offset before comparing
the second load to see if it is consecutive.

The codegen change in the new test case improves from:

vmovsd	32(%rdi), %xmm0
vmovsd	48(%rdi), %xmm1 
vmovhpd	56(%rdi), %xmm1, %xmm1
vmovhpd	40(%rdi), %xmm0, %xmm0
vinsertf128	$1, %xmm1, %ymm0, %ymm0

To:

vmovups	32(%rdi), %ymm0

An existing test case is also improved from:

vmovsd	(%rdi), %xmm0
vmovsd	16(%rdi), %xmm1
vmovsd	24(%rdi), %xmm2
vunpcklpd	%xmm2, %xmm0, %xmm0 ## xmm0 = xmm0[0],xmm2[0]
vmovhpd	8(%rdi), %xmm1, %xmm3

To:

vmovsd	(%rdi), %xmm0
vmovsd	16(%rdi), %xmm1
vmovhpd	24(%rdi), %xmm0, %xmm0
vmovhpd	8(%rdi), %xmm1, %xmm1

This patch fixes PR21771 ( http://llvm.org/bugs/show_bug.cgi?id=21771 ).

Differential Revision: http://reviews.llvm.org/D6642

llvm-svn: 224379
2014-12-16 21:57:18 +00:00
JF Bastien
02501293ba x86-32: PUSHF/POPF use/def EFLAGS
Summary: As a side-quest for D6629 jvoung pointed out that I should use -verify-machineinstrs and this found a bug in x86-32's handling of EFLAGS for PUSHF/POPF. This patch fixes the use/def, and adds -verify-machineinstrs to all x86 tests which contain 'EFLAGS'. One exception: this patch leaves inline-asm-fpstack.ll as-is because it fails -verify-machineinstrs in a way unrelated to EFLAGS. This patch also modifies cmpxchg-clobber-flags.ll along the lines of what D6629 already does by also testing i386.

Test Plan: ninja check

Reviewers: t.p.northover, jvoung

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6687

llvm-svn: 224359
2014-12-16 20:15:45 +00:00
Quentin Colombet
d31121348b [CodeGenPrepare] Move sign/zero extensions near loads using type promotion.
This patch extends the optimization in CodeGenPrepare that moves a sign/zero
extension near a load when the target can combine them. The optimization may
promote any operations between the extension and the load to make that possible.

Although this optimization may be beneficial for all targets, in particular
AArch64, this is enabled for X86 only as I have not benchmarked it for other
targets yet.


** Context **

Most targets feature extended loads, i.e., loads that perform a zero or sign
extension for free. In that context it is interesting to expose such pattern in
CodeGenPrepare so that the instruction selection pass can form such loads.
Sometimes, this pattern is blocked because of instructions between the load and
the extension. When those instructions are promotable to the extended type, we
can expose this pattern.


** Motivating Example **

Let us consider an example:
define void @foo(i8* %addr1, i32* %addr2, i8 %a, i32 %b) {
  %ld = load i8* %addr1
  %zextld = zext i8 %ld to i32
  %ld2 = load i32* %addr2
  %add = add nsw i32 %ld2, %zextld
  %sextadd = sext i32 %add to i64
  %zexta = zext i8 %a to i32
  %addza = add nsw i32 %zexta, %zextld
  %sextaddza = sext i32 %addza to i64
  %addb = add nsw i32 %b, %zextld
  %sextaddb = sext i32 %addb to i64
  call void @dummy(i64 %sextadd, i64 %sextaddza, i64 %sextaddb)
  ret void
}

As it is, this IR generates the following assembly on x86_64:
[...]
  movzbl  (%rdi), %eax   # zero-extended load
  movl  (%rsi), %es      # plain load
  addl  %eax, %esi       # 32-bit add
  movslq  %esi, %rdi     # sign extend the result of add
  movzbl  %dl, %edx      # zero extend the first argument
  addl  %eax, %edx       # 32-bit add
  movslq  %edx, %rsi     # sign extend the result of add
  addl  %eax, %ecx       # 32-bit add
  movslq  %ecx, %rdx     # sign extend the result of add
[...]
The throughput of this sequence is 7.45 cycles on Ivy Bridge according to IACA.

Now, by promoting the additions to form more extended loads we would generate:
[...]
  movzbl  (%rdi), %eax   # zero-extended load
  movslq  (%rsi), %rdi   # sign-extended load
  addq  %rax, %rdi       # 64-bit add
  movzbl  %dl, %esi      # zero extend the first argument
  addq  %rax, %rsi       # 64-bit add
  movslq  %ecx, %rdx     # sign extend the second argument
  addq  %rax, %rdx       # 64-bit add
[...]
The throughput of this sequence is 6.15 cycles on Ivy Bridge according to IACA.

This kind of sequences happen a lot on code using 32-bit indexes on 64-bit
architectures.

Note: The throughput numbers are similar on Sandy Bridge and Haswell.


** Proposed Solution **

To avoid the penalty of all these sign/zero extensions, we merge them in the
loads at the beginning of the chain of computation by promoting all the chain of
computation on the extended type. The promotion is done if and only if we do not
introduce new extensions, i.e., if we do not degrade the code quality.
To achieve this, we extend the existing “move ext to load” optimization with the
promotion mechanism introduced to match larger patterns for addressing mode
(r200947).
The idea of this extension is to perform the following transformation:
ext(promotableInst1(...(promotableInstN(load))))
=>
promotedInst1(...(promotedInstN(ext(load))))

The promotion mechanism in that optimization is enabled by a new TargetLowering
switch, which is off by default. In other words, by default, the optimization
performs the “move ext to load” optimization as it was before this patch.


** Performance **

Configuration: x86_64: Ivy Bridge fixed at 2900MHz running OS X 10.10.
Tested Optimization Levels: O3/Os
Tests: llvm-testsuite + externals.
Results:
- No regression beside noise.
- Improvements:
CINT2006/473.astar:  ~2%
Benchmarks/PAQ8p: ~2%
Misc/perlin: ~3%

The results are consistent for both O3 and Os.

<rdar://problem/18310086>

llvm-svn: 224351
2014-12-16 19:09:03 +00:00
Robert Khasanov
104b98b388 [AVX512] Enable integer arithmetic lowering for AVX512BW/VL subsets.
Added lowering tests.

llvm-svn: 224349
2014-12-16 18:24:07 +00:00
Sanjay Patel
8363dd3b42 combine consecutive subvector 16-byte loads into one 32-byte load
This is a fix for PR21709 ( http://llvm.org/bugs/show_bug.cgi?id=21709 ).
When we have 2 consecutive 16-byte loads that are merged into one 32-byte vector,
we can use a single 32-byte load instead. 
But we don't do this for SandyBridge / IvyBridge because they have slower 32-byte memops.
We also don't bother using 32-byte *integer* loads on a machine that only has AVX1 (btver2)
because those operands would have to be split in half anyway since there is no support for
32-byte integer math ops.

Differential Revision: http://reviews.llvm.org/D6492

llvm-svn: 224344
2014-12-16 16:30:01 +00:00
Simon Pilgrim
1fd72b137f Added missing tests for X86vzmovl folding. NFC.
llvm-svn: 224284
2014-12-15 22:45:48 +00:00
JF Bastien
27a63b4d77 x86: Emit LOCK prefix after DATA16
Summary: x86 allows either ordering for the LOCK and DATA16 prefixes, but using GCC+GAS leads to different code generation than using LLVM. This change matches the order that GAS emits the x86 prefixes when a semicolon isn't used in inline assembly (see tc-i386.c comment before define LOCK_PREFIX), and helps simplify tooling that operates on the instruction's byte sequence (such as NaCl's validator). This change shouldn't have any performance impact.

Test Plan: ninja check

Reviewers: craig.topper, jvoung

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D6630

llvm-svn: 224283
2014-12-15 22:34:58 +00:00
Duncan P. N. Exon Smith
9c5542c040 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Michael Kuperstein
cc87d705cb [X86] Break false dependencies before partial register updates when the source operand is in memory
Adds the various "rm" instruction variants into the list of instructions that have a partial register update. Also adds all variants of SQRTSD that were missing in the original list.

Differential Revision: http://reviews.llvm.org/D6620

llvm-svn: 224246
2014-12-15 13:18:21 +00:00
Elena Demikhovsky
51c511a201 AVX-512: Added EXPAND instructions and intrinsics.
llvm-svn: 224241
2014-12-15 10:03:52 +00:00
Robert Khasanov
64bf0f6845 [AVX512] Enabling bit logic lowering
Added lowering tests.

llvm-svn: 224132
2014-12-12 17:02:18 +00:00
Robert Khasanov
efae7453cb [AVX512] Enabling MIN/MAX lowering.
Added lowering tests.

llvm-svn: 224127
2014-12-12 15:10:43 +00:00
Andrea Di Biagio
0e11c13141 Reapply "[MachineScheduler] Fix for PR21807: minor code difference building with/without -g."
This reapplies r224118 with a fix for test 'misched-code-difference-with-debug.ll'.
That test was failing on some buildbots because it was x86 specific but it was
missing a target triple.
Added an explicit triple to test misched-code-difference-with-debug.ll.

llvm-svn: 224126
2014-12-12 15:09:58 +00:00
Andrea Di Biagio
c2fd26c14f Revert: [MachineScheduler] Fix for PR21807: minor code difference building with/without -g.
Test 'misched-code-difference-with-debug.ll' was failing on some buildbots.

llvm-svn: 224121
2014-12-12 13:34:03 +00:00
Andrea Di Biagio
77f74f08b1 [MachineScheduler] Fix for PR21807: minor code difference building with/without -g.
This patch fixes the issue reported as PR21807. There was a minor difference
in the generated code depending on the -g flag.

The cause was that with -g the machine scheduler used a different
scheduling strategy. This decision was based on the number of instructions
in a schedule region and included debug instructions in that count.

This patch fixes the issue in MISched and provides a test.

Patch by Russell Gallop!

llvm-svn: 224118
2014-12-12 12:41:22 +00:00
Ahmed Bougacha
4b8a22ae51 [X86] Add a temporary testcase for PR21876/r223996.
llvm-svn: 224074
2014-12-11 23:07:52 +00:00
Cameron McInally
a7f40d9986 [AVX512] Add support for 512b variable bit shift intrinsics.
llvm-svn: 224028
2014-12-11 17:13:05 +00:00
Elena Demikhovsky
e879b19906 AVX-512: Added all forms of COMPRESS instruction
+ intrinsics + tests

llvm-svn: 224019
2014-12-11 15:02:24 +00:00
Michael Kuperstein
e3d671e738 Add newline missing in r224010.
llvm-svn: 224011
2014-12-11 11:30:20 +00:00
Michael Kuperstein
a0c5a09356 [X86] When converting movs to pushes, don't assume MOVmi operand is an actual immediate
This should fix PR21878.

llvm-svn: 224010
2014-12-11 11:26:16 +00:00
Elena Demikhovsky
42a41becb2 AVX-512: Fixed a bug in lowering setcc for MVT::i1 type
llvm-svn: 224008
2014-12-11 10:21:12 +00:00
Sanjay Patel
ecf92813fa Match new shuffle codegen for MOVHPD patterns
Add patterns to match SSE (shufpd) and AVX (vpermilpd) shuffle codegen
when storing the high element of a v2f64. The existing patterns were
only checking for an unpckh type of shuffle. 

http://llvm.org/bugs/show_bug.cgi?id=21791

Differential Revision: http://reviews.llvm.org/D6586

llvm-svn: 223929
2014-12-10 16:58:54 +00:00
Michael Kuperstein
2b0f6b010a [X86] Make a code path in EltsFromConsecutiveLoads work only on vectors it expects
EltsFromConsecutiveLoads was apparently only ever called for 128-bit vectors, and assumed this implicitly. r223518 started calling it for AVX-sized vectors, causing the code path that had this assumption to crash.
This adds a check to make this path fire only for 128-bit vectors.

Differential Revision: http://reviews.llvm.org/D6579

llvm-svn: 223922
2014-12-10 08:46:12 +00:00
Robert Khasanov
14af293376 [AVX512] Added lowering for VBROADCASTSS/SD instructions.
Lowering patterns were written through avx512_broadcast_pat multiclass as pattern generates VBROADCAST and COPY_TO_REGCLASS nodes.
Added lowering tests.

llvm-svn: 223804
2014-12-09 18:45:30 +00:00
Chandler Carruth
bc148c7e5c [x86] Fix the test to actually test things for the CPU names, add the
missing barcelona CPU which that test uncovered, and remove the 32-bit
x86 CPUs which I really wasn't prepared to audit and test thoroughly.

If anyone wants to clean up the 32-bit only x86 CPUs, go for it.

Also, if anyone else wants to try to de-duplicate the AMD CPUs, that'd
be cool, but from the looks of it wouldn't save as much as it did for
the Intel CPUs.

llvm-svn: 223774
2014-12-09 14:25:55 +00:00
Chandler Carruth
09f2429eef [x86] Add a test for the CPU names that should have been in r223769.
llvm-svn: 223770
2014-12-09 11:19:57 +00:00
Michael Kuperstein
224c7d7edb [X86] Convert esp-relative movs of function arguments into pushes, step 1
This handles the simplest case for mov -> push conversion:
1. x86-32 calling convention, everything is passed through the stack.
2. There is no reserved call frame.
3. Only registers or immediates are pushed, no attempt to combine a mem-reg-mem sequence into a single PUSHmm.

Differential Revision: http://reviews.llvm.org/D6503

llvm-svn: 223757
2014-12-09 06:10:44 +00:00
Bruno Cardoso Lopes
915b66faf0 [CompactUnwind] Fix register encoding logic
Fix a compact unwind encoding logic bug which would try to encode
more callee saved registers than it should, leading to early bail out
in the encoding logic and abusive use of DWARF frame mode unnecessarily.

Also remove no-compact-unwind.ll which was testing the wrong thing
based on this bug and move it to valid 'compact unwind' tests. Added
other few more tests too.

llvm-svn: 223676
2014-12-08 18:18:32 +00:00
Andrea Di Biagio
bdef9a5ae6 [X86] Improved tablegen patters for matching TZCNT/LZCNT.
Teach ISel how to match a TZCNT/LZCNT from a conditional move if the
condition code is X86_COND_NE.
Existing tablegen patterns only allowed to match TZCNT/LZCNT from a
X86cond with condition code equal to X86_COND_E. To avoid introducing
extra rules, I added an 'ImmLeaf' definition that checks if the
condition code is COND_E or COND_NE.

llvm-svn: 223668
2014-12-08 17:47:18 +00:00
Andrea Di Biagio
db2b7a7592 [X86] Improved lowering of packed v8i16 vector shifts by non-constant count.
Before this patch, the backend sub-optimally expanded the non-constant shift
count of a v8i16 shift into a sequence of two 'movd' plus 'movzwl'.

With this patch the backend checks if the target features sse4.1. If so, then
it lets the shuffle legalizer deal with the expansion of the shift amount.

Example:
;;
define <8 x i16> @test(<8 x i16> %A, <8 x i16> %B) {
  %shamt = shufflevector <8 x i16> %B, <8 x i16> undef, <8 x i32> zeroinitializer
  %shl = shl <8 x i16> %A, %shamt
  ret <8 x i16> %shl
}
;;

Before (with -mattr=+avx):
  vmovd  %xmm1, %eax
  movzwl  %ax, %eax
  vmovd  %eax, %xmm1
  vpsllw  %xmm1, %xmm0, %xmm0
  retq

Now:
  vpxor  %xmm2, %xmm2, %xmm2
  vpblendw  $1, %xmm1, %xmm2, %xmm1
  vpsllw  %xmm1, %xmm0, %xmm0
  retq

llvm-svn: 223660
2014-12-08 14:36:51 +00:00
Chandler Carruth
9b55417f71 [x86] Clean up the SSE1 test to use a slightly different pattern for
matching offsets. I don't expect this to really matter, but its what the
latest incarnation of my script for maintaining these tests happens to
produce, and so its simpler for me if everything matches.

llvm-svn: 223613
2014-12-07 17:16:00 +00:00
Chandler Carruth
701b41a316 [x86] Switch a constant selection test to use positive assertions and to
store to real pointers so that its clear that the right code is in fact
being generated.

llvm-svn: 223612
2014-12-07 17:15:58 +00:00
Chandler Carruth
ddf0cf022d [x86] Cleanup the combining vector shuffle tests a bit by merging
identical checks for different SSE variants into a single block.

llvm-svn: 223611
2014-12-07 17:15:56 +00:00
Chandler Carruth
1b3d3441e0 [x86] Clean up the shift lowering vector shuffle tests a bit using my
script. Notably this folds all the SSE cases together into a single
FileCheck block. It also adds a vex prefix.

llvm-svn: 223610
2014-12-07 17:15:53 +00:00
Hans Wennborg
e8bfbc284d Add a proper triple to switch-jump-table.ll
llvm-svn: 223571
2014-12-06 02:08:16 +00:00
NAKAMURA Takumi
73f7293810 llvm/test/CodeGen/X86/switch-jump-table.ll: Add explicit triple. Local labels have a prefix "." for targeting i686-cygming.
llvm-svn: 223570
2014-12-06 02:03:49 +00:00
Ahmed Bougacha
b46577058a [X86] Refactor PMOV[SZ]Xrm to add missing AVX2 patterns.
Most patterns will go away once the extload legalization changes land.

Differential Revision: http://reviews.llvm.org/D6125

llvm-svn: 223567
2014-12-06 01:31:07 +00:00
Hans Wennborg
24cc36324d SelectionDAG switch lowering: Replace unreachable default with most popular case.
This can significantly reduce the size of the switch, allowing for more
efficient lowering.

I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.

SimplifyCFG currently does this transformation, but I'm working towards changing
that so we can optimize harder based on unreachable defaults.

Differential Revision: http://reviews.llvm.org/D6510

llvm-svn: 223566
2014-12-06 01:28:50 +00:00
Sanjay Patel
88b824a8d3 Optimize merging of scalar loads for 32-byte vectors [X86, AVX]
Fix the poor codegen seen in PR21710 ( http://llvm.org/bugs/show_bug.cgi?id=21710 ).
Before we crack 32-byte build vectors into smaller chunks (and then subsequently
glue them back together), we should look for the easy case where we can just load
all elements in a single op.

An example of the codegen change is:

From:

vmovss  16(%rdi), %xmm1
vmovups (%rdi), %xmm0
vinsertps       $16, 20(%rdi), %xmm1, %xmm1
vinsertps       $32, 24(%rdi), %xmm1, %xmm1
vinsertps       $48, 28(%rdi), %xmm1, %xmm1
vinsertf128     $1, %xmm1, %ymm0, %ymm0
retq

To:

vmovups (%rdi), %ymm0
retq

Differential Revision: http://reviews.llvm.org/D6536

llvm-svn: 223518
2014-12-05 21:28:14 +00:00
Jan Wen Voung
b856ac92dc Use 32-bit ebp for NaCl64 in a limited case: llvm.frameaddress.
Summary:
Follow up to [x32] "Use ebp/esp as frame and stack pointer":
http://reviews.llvm.org/D4617

In that earlier patch, NaCl64 was made to always use rbp.
That's needed for most cases because rbp should hold a full
64-bit address within the NaCl sandbox so that load/stores
off of rbp don't require sandbox adjustment (zeroing the top
32-bits, then filling those by adding r15).

However, llvm.frameaddress returns a pointer and pointers
are 32-bit for NaCl64. In this case, use ebp instead, which
will make the register copy type check. A similar mechanism
may be needed for llvm.eh.return, but is not added in this change.

Test Plan: test/CodeGen/X86/frameaddr.ll

Reviewers: dschuff, nadav

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D6514

llvm-svn: 223510
2014-12-05 20:55:53 +00:00
Andrea Di Biagio
38a80209d6 [X86] Improved lowering of packed vector shifts to vpsllq/vpsrlq.
SSE2/AVX non-constant packed shift instructions only use the lower 64-bit of
the shift count. 

This patch teaches function 'getTargetVShiftNode' how to deal with shifts
where the shift count node is of type MVT::i64.

Before this patch, function 'getTargetVShiftNode' only knew how to deal with
shift count nodes of type MVT::i32. This forced the backend to wrongly
truncate the shift count to MVT::i32, and then zero-extend it back to MVT::i64.

llvm-svn: 223505
2014-12-05 20:02:22 +00:00
Andrea Di Biagio
549dad7c4c [X86] Avoid introducing extra shuffles when lowering packed vector shifts.
When lowering a vector shift node, the backend checks if the shift count is a
shuffle with a splat mask. If so, then it introduces an extra dag node to
extract the splat value from the shuffle. The splat value is then used
to generate a shift count of a target specific shift.

However, if we know that the shift count is a splat shuffle, we can use the
splat index 'I' to extract the I-th element from the first shuffle operand.
The advantage is that the splat shuffle may become dead since we no longer
use it.

Example:

;;
define <4 x i32> @example(<4 x i32> %a, <4 x i32> %b) {
  %c = shufflevector <4 x i32> %b, <4 x i32> undef, <4 x i32> zeroinitializer
  %shl = shl <4 x i32> %a, %c
  ret <4 x i32> %shl
}
;;

Before this patch, llc generated the following code (-mattr=+avx):
  vpshufd $0, %xmm1, %xmm1   # xmm1 = xmm1[0,0,0,0]
  vpxor  %xmm2, %xmm2
  vpblendw $3, %xmm1, %xmm2, %xmm1 # xmm1 = xmm1[0,1],xmm2[2,3,4,5,6,7]
  vpslld %xmm1, %xmm0, %xmm0
  retq

With this patch, the redundant splat operation is removed from the code.
  vpxor  %xmm2, %xmm2
  vpblendw $3, %xmm1, %xmm2, %xmm1 # xmm1 = xmm1[0,1],xmm2[2,3,4,5,6,7]
  vpslld %xmm1, %xmm0, %xmm0
  retq

llvm-svn: 223461
2014-12-05 12:13:30 +00:00
Michael Kuperstein
7a925b41a3 [X86] Improve a dag-combine that handles a vector extract -> zext sequence.
The current DAG combine turns a sequence of extracts from <4 x i32> followed by zexts into a store followed by scalar loads.
According to measurements by Martin Krastev (see PR 21269) for x86-64, a sequence of an extract, movs and shifts gives better performance. However, for 32-bit x86, the previous sequence still seems better.

Differential Revision: http://reviews.llvm.org/D6501

llvm-svn: 223360
2014-12-04 13:49:51 +00:00
Patrik Hagglund
bd19c4a85b Use DomTree in MachineSink to sink over diamonds.
According to a previous FIXME comment we now not only look at MBB
successors, but also handle code sinking past them:

  x = computation
  if () {} else {}
  use x

The instruction could be sunk over the whole diamond for the
if/then/else (or loop, etc), allowing it to be sunk into other blocks
after that.

Modified test added in r204522, due to one spill less present.

Minor fixes in comments.

Patch provided by Jonas Paulsson. Reviewed by Hal Finkel.

llvm-svn: 223350
2014-12-04 10:36:42 +00:00
Elena Demikhovsky
befed29343 Masked Load / Store Intrinsics - the CodeGen part.
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.

Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 223348
2014-12-04 09:40:44 +00:00
Michael Liao
f24ea6579d [X86] Restore X86 base pointer after call to llvm.eh.sjlj.setjmp
Commit on 

- This patch fixes the bug described in
  http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-May/062343.html

The fix allocates an extra slot just below the GPRs and stores the base pointer
there. This is done only for functions containing llvm.eh.sjlj.setjmp that also
need a base pointer. Because code containing llvm.eh.sjlj.setjmp saves all of
the callee-save GPRs in the prologue, the offset to the extra slot can be
computed before prologue generation runs.

Impact at run-time on affected functions is::

  - One extra store in the prologue, The store saves the base pointer.
  - One extra load after a llvm.eh.sjlj.setjmp. The load restores the base pointer.

Because the extra slot is just above a gap between frame-pointer-relative and
base-pointer-relative chunks of memory, there is no impact on other offset
calculations other than ensuring there is room for the extra slot.

http://reviews.llvm.org/D6388

Patch by Arch Robison <arch.robison@intel.com>

llvm-svn: 223329
2014-12-04 00:56:38 +00:00
Quentin Colombet
ce2758eff5 [RegAllocFast] Handle implicit definitions conservatively.
Prior to this commit, physical registers defined implicitly were considered free
right after their definition, i.e.. like dead definitions. Therefore, their uses
had to immediately follow their definitions, otherwise the related register may
be reused to allocate a virtual register.

This commit fixes this assumption by keeping implicit definitions alive until
they are actually used. The downside is that if the implicit definition was dead
(and not marked at such), we block an otherwise available register. This is
however conservatively correct and makes the fast register allocator much more
robust in particular regarding the scheduling of the instructions.

Fixes PR21700.

llvm-svn: 223317
2014-12-03 23:38:08 +00:00
Peter Collingbourne
837799f13b Prologue support
Patch by Ben Gamari!

This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute.  There are a two primary usecases
that these attributes aim to serve,

  1. Function prologue sigils

  2. Function hot-patching: Enable the user to insert `nop` operations
     at the beginning of the function which can later be safely replaced
     with a call to some instrumentation facility

  3. Runtime metadata: Allow a compiler to insert data for use by the
     runtime during execution. GHC is one example of a compiler that
     needs this functionality for its tables-next-to-code functionality.

Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.

Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.

The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.

The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.

References
----------

This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).

[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html

Test Plan: testsuite

Differential Revision: http://reviews.llvm.org/D6454

llvm-svn: 223189
2014-12-03 02:08:38 +00:00
Simon Pilgrim
12f78b2c48 [X86][SSE] Keep 4i32 vector insertions in integer domain on SSE4.1 targets
4i32 shuffles for single insertions into zero vectors lowers to X86vzmovl which was using (v)blendps - causing domain switch stalls. This patch fixes this by using (v)pblendw instead.

The updated tests on test/CodeGen/X86/sse41.ll still contain a domain stall due to the use of insertps - I'm looking at fixing this in a future patch.

Differential Revision: http://reviews.llvm.org/D6458

llvm-svn: 223165
2014-12-02 22:31:23 +00:00
Philip Reames
02104421ff [Statepoints 3/4] Statepoint infrastructure for garbage collection: SelectionDAGBuilder
This is the third patch in a small series.  It contains the CodeGen support for lowering the gc.statepoint intrinsic sequences (223078) to the STATEPOINT pseudo machine instruction (223085).  The change also includes the set of helper routines and classes for working with gc.statepoints, gc.relocates, and gc.results since the lowering code uses them.  

With this change, gc.statepoints should be functionally complete.  The documentation will follow in the fourth change, and there will likely be some cleanup changes, but interested parties can start experimenting now.

I'm not particularly happy with the amount of code or complexity involved with the lowering step, but at least it's fairly well isolated.  The statepoint lowering code is split into it's own files and anyone not working on the statepoint support itself should be able to ignore it.  

During the lowering process, we currently spill aggressively to stack. This is not entirely ideal (and we have plans to do better), but it's functional, relatively straight forward, and matches closely the implementations of the patchpoint intrinsics.  Most of the complexity comes from trying to keep relocated copies of values in the same stack slots across statepoints.  Doing so avoids the insertion of pointless load and store instructions to reshuffle the stack.  The current implementation isn't as effective as I'd like, but it is functional and 'good enough' for many common use cases.  

In the long term, I'd like to figure out how to integrate the statepoint lowering with the register allocator.  In principal, we shouldn't need to eagerly spill at all.  The register allocator should do any spilling required and the statepoint should simply record that fact.  Depending on how challenging that turns out to be, we may invest in a smarter global stack slot assignment mechanism as a stop gap measure.  

Reviewed by: atrick, ributzka

llvm-svn: 223137
2014-12-02 18:50:36 +00:00
Reid Kleckner
1591491217 Parse 'ghccc' in .ll files as the GHC convention (cc 10)
Previously we just used "cc 10" in the .ll files, but that isn't very
human readable.

llvm-svn: 223076
2014-12-01 21:04:44 +00:00
Hans Wennborg
f8109e3ddf Revert r223049, r223050 and r223051 while investigating test failures.
I didn't foresee affecting the Clang test suite :/

llvm-svn: 223054
2014-12-01 17:36:43 +00:00
Hans Wennborg
09865c30b6 SelectionDAG switch lowering: Replace unreachable default with most popular case.
This can significantly reduce the size of the switch, allowing for more
efficient lowering.

I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.

llvm-svn: 223049
2014-12-01 17:08:32 +00:00
Akira Hatanaka
cad434d590 [stack protector] Set edge weights for newly created basic blocks.
This commit fixes a bug in stack protector pass where edge weights were not set
when new basic blocks were added to lists of successor basic blocks.

Differential Revision: http://reviews.llvm.org/D5766

llvm-svn: 222987
2014-12-01 04:27:03 +00:00
Hans Wennborg
22fda335d6 Switch lowering: Fix broken 'Figure out which block is next' code
This doesn't seem to have worked in a long time, but other optimizations
would clean it up.

llvm-svn: 222961
2014-11-29 21:17:05 +00:00
Duncan P. N. Exon Smith
73ce6dbb2b Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

llvm-svn: 222936
2014-11-28 21:29:14 +00:00
Sanjay Patel
019be40c8c Enable FeatureFastUAMem for btver2
Allow unaligned 16-byte memop codegen for btver2. No functional changes for any other subtargets.

Replace the existing supposed small memcpy test with an actual test of a small memcpy. 
The previous test wasn't using FileCheck either.

This patch should allow us to close PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).

Differential Revision: http://reviews.llvm.org/D6360

llvm-svn: 222925
2014-11-28 18:40:18 +00:00
Elena Demikhovsky
868b76ae69 AVX-512: Scalar ERI intrinsics
including SAE mode and memory operand.
Added AVX512_maskable_scalar template, that should cover all scalar instructions in the future.

The main difference between AVX512_maskable_scalar<> and AVX512_maskable<> is using X86select instead of vselect.
I need it, because I can't create vselect node for MVT::i1 mask for scalar instruction.

http://reviews.llvm.org/D6378

llvm-svn: 222820
2014-11-26 10:46:49 +00:00
Simon Pilgrim
0e1c44b939 [X86][SSE] Improvements to byte shift shuffle matching
Since (v)pslldq / (v)psrldq instructions resolve to a single input argument it is useful to match it much earlier than we currently do - this prevents more complicated shuffles (notably insertion into a zero vector) matching before it.

Differential Revision: http://reviews.llvm.org/D6409

llvm-svn: 222796
2014-11-25 22:34:59 +00:00
Cameron McInally
c32dadfa69 [AVX512] Add 512b integer shift by variable intrinsics and patterns.
llvm-svn: 222786
2014-11-25 20:41:51 +00:00
Andrea Di Biagio
3646b17160 [X86] Improved target specific combine on VSELECT dag nodes.
This patch teaches function 'transformVSELECTtoBlendVECTOR_SHUFFLE' how to
convert VSELECT dag nodes to shuffles on targets that do not have SSE4.1.
On pre-SSE4.1 targets, we can still perform blend operations using movss/movsd.

Also, removed a target specific combine that performed a premature lowering of
VSELECT nodes to target specific MOVSS/MOVSD nodes.

llvm-svn: 222647
2014-11-24 12:23:15 +00:00
Michael Kuperstein
b12b19a24a [X86] Fixes bug in build_vector v4x32 lowering
r222375 made some improvements to build_vector lowering of v4x32 and v4xf32 into an insertps, but it missed a case where:

1. A single extracted element is used twice.
2. The lower of the two non-zero indexes should be preserved, and the higher should be used for the dest mask.

This caused a crash, since the source value for the insertps ends-up uninitialized.

Differential Revision: http://reviews.llvm.org/D6377

llvm-svn: 222635
2014-11-23 13:09:06 +00:00
Elena Demikhovsky
36a2243ab7 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 222632
2014-11-23 08:07:43 +00:00
Chandler Carruth
4c0a2a8001 [x86] Add some tests for a common unpack pattern of vector shuffle that
has a remarkably unique and efficient lowering.

While we get this some of the time already, we miss a few cases and
there wasn't a principled reason we got it. We should at least test
this. v8 already has tests for this pattern.

llvm-svn: 222607
2014-11-22 05:44:43 +00:00
Sanjay Patel
776e5485fb Add a feature flag for slow 32-byte unaligned memory accesses [x86].
This patch adds a feature flag to avoid unaligned 32-byte load/store AVX codegen
for Sandy Bridge and Ivy Bridge. There is no functionality change intended for 
those chips. Previously, the absence of AVX2 was being used as a proxy to detect
this feature. But that hindered codegen for AVX-enabled AMD chips such as btver2
that do not have the 32-byte unaligned access slowdown.

Performance measurements are included in PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).

Differential Revision: http://reviews.llvm.org/D6355

llvm-svn: 222544
2014-11-21 17:40:04 +00:00
Chandler Carruth
5e598c0342 [x86] Restructure the checking patterns for v16 and v32 avx2 vector
shuffle lowering to allow much better blend matching.

Specifically, with the new structure the code seems clearer to me and we
correctly can hit the cases where merging two 128-bit lanes is a clear
win and can be shuffled cheaply afterward.

llvm-svn: 222539
2014-11-21 14:53:03 +00:00
Chandler Carruth
7491f1f32f [x86] Make the previous logic significantly less conservative and get
a bunch more improvements.

Non-lane-crossing is fine, the key is that lane merging only makes sense
for single-input shuffles. Not sure why I got so turned around here. The
code all works, I was just using the wrong model for it.

This only updates v4 and v8 lowering. The v16 and v32 lowering requires
restructuring the entire check sequence.

llvm-svn: 222537
2014-11-21 14:33:24 +00:00
Andrea Di Biagio
0a8cf1ad5a [DAG] Teach how to turn a build_vector into a shuffle if some of the operands are zero.
Before this patch, the DAGCombiner only tried to convert build_vector dag nodes
into shuffles if all operands were either extract_vector_elt or undef.

This patch improves that logic and teaches the DAGCombiner how to deal with
build_vector dag nodes where one or more operands are zero. A build_vector
dag node with some zero operands is turned into a shuffle only if the resulting
shuffle mask is legal for the target.

llvm-svn: 222536
2014-11-21 14:32:06 +00:00
Chandler Carruth
8387bec088 [x86] Teach the x86 vector shuffle lowering to detect mergable 128-bit
lanes.

By special casing these we can often either reduce the total number of
shuffles significantly or reduce the number of (high latency on Haswell)
AVX2 shuffles that potentially cross 128-bit lanes. Even when these
don't actually cross lanes, they have much higher latency to support
that. Doing two of them and a blend is worse than doing a single insert
across the 128-bit lanes to blend and then doing a single interleaved
shuffle.

While this seems like a narrow case, it kept cropping up on me and the
difference is *huge* as you can see in many of the test cases. I first
hit this trying to perfectly fix the interleaving shuffle patterns used
by Halide for AVX2.

llvm-svn: 222533
2014-11-21 13:56:05 +00:00
Chandler Carruth
5646862a2e [x86] Remove more windows line endings that slipped into this file...
llvm-svn: 222528
2014-11-21 12:33:46 +00:00
Chandler Carruth
2db7c4cf32 [x86] Add a bunch of test cases to 256-bit shuffles that exercise
merging 128-bit subvectors and also shuffling all the elements of those
subvectors. Currently we generate pretty bad code for many of these, but
I'm testing a patch that should dramatically improve this in addition to
making the shuffle lowering robust to other changes.

llvm-svn: 222525
2014-11-21 12:17:50 +00:00
Alexey Volkov
235268b4ed [X86] For Silvermont CPU use 16-bit division instead of 64-bit for small positive numbers
Differential Revision: http://reviews.llvm.org/D5938

llvm-svn: 222521
2014-11-21 11:19:34 +00:00
Quentin Colombet
8fea50c066 [X86] Do not custom lower UINT_TO_FP when the target type does not
match the custom lowering.

<rdar://problem/19026326>

llvm-svn: 222489
2014-11-21 00:47:19 +00:00
Saleem Abdulrasool
0de13e90eb X86: use the correct alloca symbol for Windows Itanium
Windows itanium targets the MSVCRT, and the stack probe symbol is provided by
MSVCRT.  This corrects the emission of stack probes on i686-windows-itanium.

llvm-svn: 222439
2014-11-20 18:01:26 +00:00
Andrea Di Biagio
b770dd344e [X86] Improved lowering of v4x32 build_vector dag nodes.
This patch improves the lowering of v4f32 and v4i32 build_vector dag nodes
that are known to have at least two non-zero elements.

With this patch, a build_vector that performs a blend with zero is 
converted into a shuffle. This is done to let the shuffle legalizer expand
the dag node in a optimal way. For example, if we know that a build_vector
performs a blend with zero, we can try to lower it as a movq/blend instead of
always selecting an insertps.

This patch also improves the logic that lowers a build_vector into a insertps
with zero masking. See for example the extra test cases added to test sse41.ll.

Differential Revision: http://reviews.llvm.org/D6311

llvm-svn: 222375
2014-11-19 19:34:29 +00:00
Simon Pilgrim
e5f972f1c1 [X86][SSE] pslldq/psrldq byte shifts/rotation for SSE2
This patch builds on http://reviews.llvm.org/D5598 to perform byte rotation shuffles (lowerVectorShuffleAsByteRotate) on pre-SSSE3 (palignr) targets - pre-SSSE3 is only enabled on i8 and i16 vector targets where it is a more definite performance gain.

I've also added a separate byte shift shuffle (lowerVectorShuffleAsByteShift) that makes use of the ability of the SLLDQ/SRLDQ instructions to implicitly shift in zero bytes to avoid the need to create a zero register if we had used palignr.

Differential Revision: http://reviews.llvm.org/D5699

llvm-svn: 222340
2014-11-19 10:06:49 +00:00
Simon Pilgrim
daabed160f [X86][AVX] 256-bit vector stack unaligned load/stores identification
Under many circumstances the stack is not 32-byte aligned, resulting in the use of the vmovups/vmovupd/vmovdqu instructions when inserting ymm reloads/spills.

This minor patch adds these instructions to the isFrameLoadOpcode/isFrameStoreOpcode helpers so that they can be correctly identified and not be treated as folded reloads/spills.

This has also been noticed by http://llvm.org/bugs/show_bug.cgi?id=18846 where it was causing redundant spills - I've added a reduced test case at test/CodeGen/X86/pr18846.ll

Differential Revision: http://reviews.llvm.org/D6252

llvm-svn: 222281
2014-11-18 23:38:19 +00:00
Alexey Volkov
3cc8e8e28b [X86] Use ADD/SUB instead of INC/DEC for Haswell and Broadwell CPUs
Differential Revision: http://reviews.llvm.org/D5934

llvm-svn: 222141
2014-11-17 16:17:51 +00:00
Bob Wilson
0774bc6c56 Fix CR/LF line endings in test case.
llvm-svn: 222120
2014-11-17 08:00:45 +00:00
Andrea Di Biagio
5475bc1d1b [DAG] Improved target independent vector shuffle folding logic.
This patch teaches the DAGCombiner how to combine shuffles according to rules:
   shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(B, A, M2)
   shuffle(shuffle(A, B, M0), B, M1) -> shuffle(B, A, M2)
   shuffle(shuffle(A, B, M0), A, M1) -> shuffle(B, A, M2)

llvm-svn: 222090
2014-11-15 22:56:25 +00:00
Simon Pilgrim
5e170d7652 [X86][SSE] Improve legal SHUFP and PSHUFD shuffle matching
Updated X86TargetLowering::isShuffleMaskLegal to match SHUFP masks with commuted inputs and PSHUFD masks that reference the second input.

As part of this I've refactored isPSHUFDMask to work in a more general manner and allow it to match against either the first or second input vector.

Differential Revision: http://reviews.llvm.org/D6287

llvm-svn: 222087
2014-11-15 21:13:05 +00:00
Cameron McInally
8882e35937 [AVX512] Add 512b masked integer shift by immediate patterns.
llvm-svn: 222002
2014-11-14 15:43:00 +00:00
Tim Northover
3a30fb90f5 X86: use getConstant rather than getTargetConstant behind BUILD_VECTOR.
getTargetConstant should only be used when you can guarantee the instruction
selected will be able to cope with the raw value. BUILD_VECTOR is rather too
generic for this so we should use getConstant instead. In that case, an
instruction can still consume the constant, but if it doesn't it'll be
materialised through its own round of ISel.

Should fix PR21352.

llvm-svn: 221961
2014-11-14 01:30:14 +00:00
Reid Kleckner
c90bcabd2d Allow the use of functions as typeinfo in landingpad clauses
This is one step towards supporting SEH filter functions in LLVM.

llvm-svn: 221954
2014-11-14 00:35:50 +00:00
Chandler Carruth
a6a8ccfa74 [x86] Add some tests for specific patterns of lane-flips combined with
in-lane shuffles that aren't always handled well by the current vector
shuffle lowering.

No functionality change yet, that will follow in a subsequent commit.

llvm-svn: 221938
2014-11-13 22:49:44 +00:00
Elena Demikhovsky
9da1df2e58 AVX-512: SINT_TO_FP cost model and some bugfixes
Checked some corner cases, for example translation
of <8 x i1> to <8 x double>

llvm-svn: 221883
2014-11-13 11:46:16 +00:00
Chandler Carruth
2a4813287b [x86] Teach the vector shuffle lowering to make a more nuanced decision
between splitting a vector into 128-bit lanes and recombining them vs.
decomposing things into single-input shuffles and a final blend.

This handles a large number of cases in AVX1 where the cross-lane
shuffles would be much more expensive to represent even though we end up
with a fast blend at the root. Instead, we can do a better job of
shuffling in a single lane and then inserting it into the other lanes.

This fixes the remaining bits of Halide's regression captured in PR21281
for AVX1. However, the bug persists in AVX2 because I've made this
change reasonably conservative. The cases where it makes sense in AVX2
to split into 128-bit lanes are much more rare because we can often do
full permutations across all elements of the 256-bit vector. However,
the particular test case in PR21281 is an example of one of the rare
cases where it is *always* better to work in a single 128-bit lane. I'm
going to try to teach the logic to detect and form the good code even in
AVX2 next, but it will need to use a separate heuristic.

Finally, there is one pesky regression here where we previously would
craftily use vpermilps in AVX1 to shuffle both high and low halves at
the same time. We no longer pull that off, and not for any really good
reason. Ultimately, I think this is just another missing nuance to the
selection heuristic that I'll try to add in afterward, but this change
already seems strictly worth doing considering the magnitude of the
improvements in common matrix math shuffle patterns.

As always, please let me know if this causes a surprising regression for
you.

llvm-svn: 221861
2014-11-13 04:06:10 +00:00
Chandler Carruth
d0c20aee06 [x86] Don't form overly fragmented blends when splitting and
re-combining shuffles because nothing was available in the wider vector
type.

The key observation (which I've put in the comments for future
maintainers) is that at this point, no further combining is really
possible. And so even though these shuffles trivially could be combined,
we need to actually do that as we produce them when producing them this
late in the lowering.

This fixes another (huge) part of the Halide vector shuffle regressions.
As it happens, this was already well covered by the tests, but I hadn't
noticed how bad some of these got. The specific patterns that turn
directly into unpckl/h patterns were occurring *many* times in common
vector processing code.

There are still more problems here sadly, but trying to incrementally
tease them apart and it looks like this is the core of the problem in
the splitting logic.

There is some chance of regression here, you can see it in the test
changes. Specifically, where we stop forming pshufb in some cases, it is
possible that pshufb was in fact faster. Intel "says" that pshufb is
slower than the instruction sequences replacing it.

llvm-svn: 221852
2014-11-13 02:42:08 +00:00
Quentin Colombet
9239f4dcef [CodeGenPrepare] Handle zero extensions in the TypePromotionHelper.
Prior to this patch the TypePromotionHelper was promoting only sign extensions.
Supporting zero extensions changes:
- How constants are extended.
- How sign extensions, zero extensions, and truncate are composed together.
- How the type of the extended operation is recorded. Now we need to know the
  kind of the extension as well as its type.

Each change is fairly small, unlike the diff.
Most of the diff are comments/variable renaming to say "extension" instead of
"sign extension".

The performance improvements on the test suite are within the noise.

Related to <rdar://problem/18310086>.

llvm-svn: 221851
2014-11-13 01:44:51 +00:00
Sanjay Patel
e1d31003d6 Expose the number of Newton-Raphson iterations applied to the hardware's reciprocal estimate as a parameter (x86).
This is a follow-on to r221706 and r221731 and discussed in more detail in PR21385.

This patch also loosens the testcase checking for btver2. We know that the "1.0" will be loaded, but
we can't tell exactly when, so replace the CHECK-NEXT specifiers with plain CHECKs. The CHECK-NEXT
sequence relied on a quirk of post-RA-scheduling that may change independently of anything in these tests.

llvm-svn: 221819
2014-11-12 21:39:01 +00:00
Cameron McInally
69dc38d962 [AVX512] Add integer shift by immediate intrinsics.
llvm-svn: 221811
2014-11-12 19:58:54 +00:00
Chandler Carruth
8c45bca63a [x86] Start improving the matching of unpck instructions based on test
cases from Halide folks. This initial step was extracted from
a prototype change by Clay Wood to try and address regressions found
with Halide and the new vector shuffle lowering.

llvm-svn: 221779
2014-11-12 10:05:18 +00:00
Chandler Carruth
30d928c2f6 [x86] Clean up a bunch of vector shuffle tests with my script. Notably,
removes windows line endings and other noise. This is in prelude to
making substantive changes to these tests.

llvm-svn: 221776
2014-11-12 09:17:15 +00:00
Elena Demikhovsky
2450049261 AVX-512: Intrinsics for ERI
3 instructions: vrcp28, vrsqrt28, vexp2, only vector forms.
Intrinsics include SAE (Suppres All Exceptions) parameter.

http://reviews.llvm.org/D6214

llvm-svn: 221774
2014-11-12 07:31:03 +00:00