promoted to legal types without changing the type of the vector. This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.
It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated. The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.
Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands. This patch updates all of the places that I could
find to handle that case.
llvm-svn: 68996
- Add patterns for h-register extract, which avoids a shift and mask,
and in some cases a temporary register.
- Add address-mode matching for turning (X>>(8-n))&(255<<n), where
n is a valid address-mode scale value, into an h-register extract
and a scaled-offset address.
- Replace X86's MOV32to32_ and related instructions with the new
target-independent COPY_TO_SUBREG instruction.
On x86-64 there are complicated constraints on h registers, and
CodeGen doesn't currently provide a high-level way to express all of them,
so they are handled with a bunch of special code. This code currently only
supports extracts where the result is used by a zero-extend or a store,
though these are fairly common.
These transformations are not always beneficial; since there are only
4 h registers, they sometimes require extra move instructions, and
this sometimes increases register pressure because it can force out
values that would otherwise be in one of those registers. However,
this appears to be relatively uncommon.
llvm-svn: 68962
This will be used to replace things like X86's MOV32to32_.
Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.
Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.
llvm-svn: 68961
ISD::SIGN_EXTEND_INREG. Tablegen-generated code can handle
these cases, and the scheduling issues observed earlier
appear to be resolved now.
llvm-svn: 68959
in multiple classes in the case that the classes are all
in subset/superset relations. This function is used by the
fast-isel emitter, which always wants the super-most set.
llvm-svn: 68957
the subreg field to 0, since the subreg field is only used
for virtual register subregs. This doesn't change
current functionality; it just eliminates bogus noise from
debug output.
llvm-svn: 68955
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
llvm-svn: 68940
strncat :(
strncat(foo, "bar", 99)
would be optimized to
memcpy(foo+strlen(foo), "bar", 100, 1)
instead of
memcpy(foo+strlen(foo), "bar", 4, 1)"
Patch by Benjamin Kramer!
llvm-svn: 68905
Create debug_inlined dwarf section using these information. This info is used by gdb, at least on Darwin, to enable better experience debugging inlined functions. See DwarfWriter.cpp for more information on structure of debug_inlined section.
llvm-svn: 68847