1. Functions do not make things incomplete, only variables
2. Constant global variables no longer need to be marked incomplete, because
we are guaranteed that the initializer for the global will be in the
graph we are hacking on now. This makes resolution of indirect calls happen
a lot more in the bu pass, supports things like vtables and the C counterparts
(giant constant arrays of function pointers), etc...
Testcase here: test/Regression/Analysis/DSGraph/constant_globals.ll
llvm-svn: 11852
Make the incompleteness marker faster by looping directly over the globals
instead of over the scalars to find the globals
Fix a bug where we didn't mark a global incomplete if it didn't have any
outgoing edges. This wouldn't break any current clients but is still wrong.
llvm-svn: 11848
removeDeadNodes is called, only call it at the end of the pass being run.
This saves 1.3 seconds running DSA on 177.mesa (5.3->4.0s), which is
pretty big. This is only possible because of the automatic garbage
collection done on forwarding nodes.
llvm-svn: 11178
DSGraphs while they are forwarding. When the last reference to the forwarding
node is dropped, the forwarding node is autodeleted. This should simplify
removeTriviallyDead nodes, and is only (efficiently) possible because we are
using an ilist of dsnodes now.
llvm-svn: 11175
function to find the globals, iterate over all of the globals directly. This
speeds the function up from 14s to 6.3s on perlbmk, reducing DSA time from
53->46s.
llvm-svn: 10996
This reduces the number of nodes allocated, then immediately merged and DNE'd
from 2193852 to 1298049. unfortunately this only speeds DSA up by ~1.5s (of
53s), because it's spending most of its time waddling through the scalar map :(
llvm-svn: 10992
Also, use RC::merge when possible, reducing the number of nodes allocated, then immediately merged away from 2985444 to 2193852 on perlbmk.
llvm-svn: 10991
it to be off. If it looks like it's completely unnecessary after testing, I
will remove it completely (which is the hope).
* Callers of the DSNode "copy ctor" can not choose to not copy links.
* Make node collapsing not create a garbage node in some cases, avoiding a
memory allocation, and a subsequent DNE.
* When merging types, allow two functions of different types to be merged
without collapsing.
* Use DSNodeHandle::isNull more often instead of DSNodeHandle::getNode() == 0,
as it is much more efficient.
*** Implement the new, more efficient reachability cloner class
In addition to only cloning nodes that are reachable from interesting
roots, this also fixes the huge inefficiency we had where we cloned lots
of nodes, only to merge them away immediately after they were cloned.
Now we only actually allocate a node if there isn't one to merge it into.
* Eliminate the now-obsolete cloneReachable* and clonePartiallyInto methods
* Rewrite updateFromGlobalsGraph to use the reachability cloner
* Rewrite mergeInGraph to use the reachability cloner
* Disable the scalar map scanning code in removeTriviallyDeadNodes. In large
SCC's, this is extremely expensive. We need a better data structure for the
scalar map, because we really want to scan the unique node handles, not ALL
of the scalars.
* Remove the incorrect SANER_CODE_FOR_CHECKING_IF_ALL_REFERRERS_ARE_FROM_SCALARMAP code.
* Move the code for eliminating integer nodes from the trivially dead
eliminator to the dead node eliminator.
* removeDeadNodes no longer uses removeTriviallyDeadNodes, as it contains a
superset of the node removal power.
* Only futz around with the globals graph in removeDeadNodes if it is modified
llvm-svn: 10987
map was only used to implement a marginal GlobalsGraph optimization, and it
actually slows the analysis down (due to the overhead of keeping it), so just
eliminate it entirely.
llvm-svn: 10955
in terms of it.
Though clonePartiallyInto is not cloning partial graphs yet, this change
dramatically speeds up inlining of graphs with many scalars. For example,
this change speeds up the BU pass on 253.perlbmk from 69s to 36s, because
it avoids iteration over the scalar map, which can get pretty large.
llvm-svn: 10951
used to eliminate the hard coded, hacked in, sparc specific, global TargetData.
Changing the TargetData used to actually match the code fixes problems, and
eliminates a crash.
llvm-svn: 9659
and (2) faster inlining by cloning only reachable nodes. In particular:
(1) Added DSGraph::cloneReachableSubgraph and DSGraph::cloneReachableNodes
to clone the subgraph reachable from a set of root nodes, into the
current graph, merging the global nodes into thos in the current graph.
The TD pass now uses this for faster inlining, and so does the
next function.
(2) Added DSGraph::updateFromGlobalGraph() to rematerialize nodes from the
globals graph into the current graph in both BU and TD passes.
(3) `I' flags are removed from all nodes in the globals graph, because they
are difficult to maintain correctly and are not needed anyway.
(4) Aux. function calls are only removed to the globals graph if they
will never be resovled. (This is what fixed gap.) The immediate
reason is that if we took these out of a function (and moved them to
the globals graph) we would need to rematerialize these nodes into the
function graph for every function in the BU pass. The longer term
problem is that we would need to find a way to remove them from the
globals graph iff they have been resolved on all paths through the
call graph.
llvm-svn: 7187