First, collect the register usage in each function, then apply the
maximum register usage of all functions to functions with indirect
calls.
This is more accurate than guessing the maximum register usage without
looking at the actual usage.
As before, assume that indirect calls will hit a function in the
current module.
Differential Revision: https://reviews.llvm.org/D105839
Code in getCPUNameFromS390Model currently assumes that the
numerical value of the model number always increases with
future hardware. While this has happened to be the case
with the last few machines, it is not guaranteed -- that
assumption was violated with (much) older machines, and
it can be violated again with future machines.
Fix by explicitly listing model numbers for all supported
machine models.
This patch fixes a clearly-broken function that I absent-mindedly bodged
many months ago.
Over in D85749 I landed the substituteDebugValuesForInst, that creates
substitution records for all the def operands from one debug-labelled
instruction to the new one. Unfortunately it would crash if the two
instructions had different numbers of operands; I tried to fix this in
537f0fbe82 by adding a "max operand" parameter to the method, but then
didn't actually change the loop bound to take account of this. It passed
all the tests because.... well there wasn't any real test coverage of this
method.
This patch fixes up the loop to be bounded by the MaxOperand bound; and
adds test coverage for the x86-fixup-LEAs calls to this method, so that
it's actually tested.
Differential Revision: https://reviews.llvm.org/D105820
This patch adds the new system registers introduced in SME:
- ID_AA64SMFR0_EL1 (ro) SME feature identifier.
- SMCR_ELx (r/w) streaming mode control register for configuring
effective SVE Streaming SVE Vector length when the PE is in
Streaming SVE mode.
- SVCR (r/w) streaming vector control register, visible at all
exception levels. Provides access to PSTATE.SM and PSTATE.ZA
using MSR and MRS instructions.
- SMPRI_EL1 (r/w) streaming mode execution priority register.
- SMPRIMAP_EL2 (r/w) streaming mode priority mapping register.
- SMIDR_EL1 (ro) streaming mode identification register.
- TPIDR2_EL0 (r/w) for use by SME software to manage per-thread
SME context.
- MPAMSM_EL1 (r/w) MPAM (v8.4) streaming mode register, for
labelling memory accesses performed in streaming mode.
Also added in this patch are the SME mode change instructions.
Three MSR immediate instructions are implemented to set or clear
PSTATE.SM, PSTATE.ZA, or both respectively:
- MSR SVCRSM, #<imm1>
- MSR SVCRZA, #<imm1>
- MSR SVCRSMZA, #<imm1>
The following smstart/smstop aliases are also implemented for
convenience:
smstart -> MSR SVCRSMZA, #1
smstart sm -> MSR SVCRSM, #1
smstart za -> MSR SVCRZA, #1
smstop -> MSR SVCRSMZA, #0
smstop sm -> MSR SVCRSM, #0
smstop za -> MSR SVCRZA, #0
The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D105576
AAMemoryBehaviorFloating used a custom use tracking mechanism even
though checkForAllUses exists and is already more powerful. Further,
AAMemoryBehaviorFloating uses AANoCapture to guarantee that there are no
aliases and following the uses is sufficient. This is an OK assumption
if checkForAllUses is used but custom tracking is easily out of sync
with AANoCapture and problems follow.
The pattern we match is (sext_inreg (assertzexti32 (fp_to_uint)), i32). If
the assertzexti32 has an additional user we'll end up emitting
an fcvt.wu and an fcvt.lu.
This can happen if the original fp_to_uint before type legalization
has one user that causes a sext_inreg to be emitted and one that
doesn't.
This does ensure `InformationCache::getPotentiallyReachable` will not
crash/assert on instructions from different functions but simply return
that one is reachable, which is conservatively correct.
As with other patches before, the simplification callback interface
requires us to go through the Attributor::getAssumedSimplified API first
before we recurs.
It is unclear if the problem can be explicitly tested with our current
infrastructure.
We first simplify the operands of a compare and then reason on the
simplified versions, e.g., with AANonNull.
This does improve the simplification capabilities but also fixes a
potential problem that has not yet been observed by simplifying the
operands first.
A byval argument is a different value in the caller and callee, we
cannot propagate the information as part of AAValueSimplify. Users that
want to deal with byval arguments need to specifically perform the
argument -> call site step. We do not do this for now.
This patch introduces AAPointerInfo which tracks the uses of a pointer
and places them in "bins" based on their offset from the base and access
size.
As with other AAs, any pointer can be tracked but it is up to the user
to make sense of the results. The user in this patch is AAValueSimplify
and AAPotentialValues which both utilize AAPointerInfo to determine the
value of a load. For now, this is restricted to loads of allocas and
internal globals. Through the use of AAPointerInfo and the "bins" we can
track struct members separately. The users also know that storing only
zeros (at unknown indices) will result in loading only 0 (from unknown
indices). Other than that, the users are flow and context insensitive
(for now).
To deal with the "bins" more easily, AAPointerInfo provides a
forallInterfearingAccesses that applies a callback on all accesses
that might interfere with a given load or store.
Differential Revision: https://reviews.llvm.org/D104432
As a first step to simplify loads we only handle `null` and `undef`
underlying objects, as well as objects that have the load as a single user.
Loads of those values can be replaced by the initializer, if any.
Proper reasoning is introduced in a follow up patch
Differential Revision: https://reviews.llvm.org/D103862
We did not properly use SPMDCompatibilityTracker in various places.
This patch makes sure we look at the validity properly and also fix
the state if we can.
Differential Revision: https://reviews.llvm.org/D106085
This reverts commit 4ae575b9997e0903d1c2ec01a43e3f3f2db5df16 and 9b965b37c75d626c01951184088314590e38d299.
There is an use-of-uninitialized-value bug in the `else` branch in ImportSection::addImport.
Allow arbitrary strides, and make sure we return the correct result when
the backedge-taken count is zero.
Differential Revision: https://reviews.llvm.org/D106197
Wrap semantics are subtle when combined with multiple exits. This has caused several rounds of confusion during recent reviews, so try to document the subtly distinction between when wrap flags provide <u and <=u facts.
The specific case that triggered this was when inlining a recursive
internal function into itself caused the recursion to go away, allowing
the inliner to mark the function as dead. The inliner marks the SCC as
invalidated but does not provide a new SCC to continue with.
This matches the implementations of ModuleToPostOrderCGSCCPassAdaptor
and CGSCCPassManager.
Fixes PR50363.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D106306
Debug info sections need R_WASM_FUNCTION_OFFSET_I32 relocs (with FK_Data_4 fixup
kinds) to refer to functions (instead of R_WASM_TABLE_INDEX as is used in data
sections). Usually this is done in a convoluted way, with unnamed temp data
symbols which target the start of the function, in which case
WasmObjectWriter::recordRelocation converts it to use the section symbol
instead. However in some cases the function can actually be undefined; in this
case the dwarf generator uses the function symbol (a named undefined function
symbol) instead. In that case the section-symbol transform doesn't work and we
need to generate the correct reloc type a different way. In this change
WebAssemblyWasmObjectWriter::getRelocType takes the fixup section type into
account to choose the correct reloc type.
Fixes PR50408
Differential Revision: https://reviews.llvm.org/D103557
It turns out that during training, the time required to parse the
textual protobuf of a training log is about the same as the time it
takes to compile the module generating that log. Using binary protobufs
instead elides that cost almost completely.
Differential Revision: https://reviews.llvm.org/D106157