values passed to llvm.dbg.value were not valid for the intrinsic, it
might have caused trouble one day if the verifier ever started checking
for valid debug info.
llvm-svn: 103038
RAUW of a global variable with a local variable in function F,
if function local metadata M in function G was using the global
then M would become function-local to both F and G, which is not
allowed. See the testcase for an example. Fixed by detecting
this situation and zapping the metadata operand when it occurs.
llvm-svn: 103007
to an element of a vector in a static ctor) which occurs with an
unrelated patch I'm testing. Annoyingly, EvaluateStoreInto basically
does exactly the same stuff as InsertElement constant folding, but it
now handles vectors, and you can't insertelement into a vector. It
would be 'really nice' if GEP into a vector were not legal.
llvm-svn: 92889
ConstantExpr, not just the top-level operator. This allows it to
fold many more constants.
Also, make GlobalOpt call ConstantFoldConstantExpression on
GlobalVariable initializers.
llvm-svn: 89659
Here is the original commit message:
This commit updates malloc optimizations to operate on malloc calls that have constant int size arguments.
Update CreateMalloc so that its callers specify the size to allocate:
MallocInst-autoupgrade users use non-TargetData-computed allocation sizes.
Optimization uses use TargetData to compute the allocation size.
Now that malloc calls can have constant sizes, update isArrayMallocHelper() to use TargetData to determine the size of the malloced type and the size of malloced arrays.
Extend getMallocType() to support malloc calls that have non-bitcast uses.
Update OptimizeGlobalAddressOfMalloc() to optimize malloc calls that have non-bitcast uses. The bitcast use of a malloc call has to be treated specially here because the uses of the bitcast need to be replaced and the bitcast needs to be erased (just like the malloc call) for OptimizeGlobalAddressOfMalloc() to work correctly.
Update PerformHeapAllocSRoA() to optimize malloc calls that have non-bitcast uses. The bitcast use of the malloc is not handled specially here because ReplaceUsesOfMallocWithGlobal replaces through the bitcast use.
Update OptimizeOnceStoredGlobal() to not care about the malloc calls' bitcast use.
Update all globalopt malloc tests to not rely on autoupgraded-MallocInsts, but instead use explicit malloc calls with correct allocation sizes.
llvm-svn: 86311
MallocInst-autoupgrade users use non-TargetData-computed allocation sizes.
Optimization uses use TargetData to compute the allocation size.
Now that malloc calls can have constant sizes, update isArrayMallocHelper() to use TargetData to determine the size of the malloced type and the size of malloced arrays.
Extend getMallocType() to support malloc calls that have non-bitcast uses.
Update OptimizeGlobalAddressOfMalloc() to optimize malloc calls that have non-bitcast uses. The bitcast use of a malloc call has to be treated specially here because the uses of the bitcast need to be replaced and the bitcast needs to be erased (just like the malloc call) for OptimizeGlobalAddressOfMalloc() to work correctly.
Update PerformHeapAllocSRoA() to optimize malloc calls that have non-bitcast uses. The bitcast use of the malloc is not handled specially here because ReplaceUsesOfMallocWithGlobal replaces through the bitcast use.
Update OptimizeOnceStoredGlobal() to not care about the malloc calls' bitcast use.
Update all globalopt malloc tests to not rely on autoupgraded-MallocInsts, but instead use explicit malloc calls with correct allocation sizes.
llvm-svn: 86077
ArraySize * ElementSize
ElementSize * ArraySize
ArraySize << log2(ElementSize)
ElementSize << log2(ArraySize)
Refactor isArrayMallocHelper and delete isSafeToGetMallocArraySize, so that there is only 1 copy of the malloc array determining logic.
Update users of getMallocArraySize() to not bother calling isArrayMalloc() as well.
llvm-svn: 85421
Update testcases that rely on malloc insts being present.
Also prematurely remove MallocInst handling from IndMemRemoval and RaiseAllocations to help pass tests in this incremental step.
llvm-svn: 84292
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
to find a tiny mouse hole to squeeze through, it struck
me that globals without a name can be considered internal
since they can't be referenced from outside the current
module. This patch makes GlobalOpt give them internal
linkage. Also done for aliases even though they always
have names, since in my opinion anonymous aliases should
be allowed for consistency with global variables and
functions. So if that happens one day, this code is ready!
llvm-svn: 66267
If non constant local GV named A is used by a constant local GV named B (e.g. llvm.dbg.variable) and B is not used by anyone else then eliminate A as well as B.
In other words, debug info should not interfere in removal of unused GV.
--This life, and those below, will be ignored--
M test/Transforms/GlobalOpt/2009-03-03-dbg.ll
M lib/Transforms/IPO/GlobalOpt.cpp
llvm-svn: 66167
vector and extraneous loop over it, 2) not delete globals used by
phis/selects etc which could actually be useful. This fixes PR3321.
Many thanks to Duncan for narrowing this down.
llvm-svn: 62201
and clean recursive descent parser.
This change has a couple of ramifications:
1. The parser code is about 400 lines shorter (in what we maintain, not
including what is autogenerated).
2. The code should be significantly faster than the old code because we
don't have to work around bison's poor handling of datatypes with
ctors/dtors. This also makes the code much more resistant to memory
leaks.
3. We now get caret diagnostics from the .ll parser, woo.
4. The actual diagnostics emited from the parser are completely different
so a bunch of testcases had to be updated.
5. I now disallow "%ty = type opaque %ty = type i32". There was no good
reason to support this, it was just an accident of the old
implementation. I have no reason to think that anyone is actually using
this.
6. The syntax for sticking a global variable has changed to make it
unambiguous. I don't think anyone is depending on this since only clang
supports this and it is not solid yet, so I'm not worried about anything
breaking.
7. This gets rid of the last use of bison, and along with it the .cvs files.
I'll prune this from the makefiles as a subsequent commit.
There are a few minor cleanups that can be done after this commit (suggestions
welcome!) but this passes dejagnu testing and is ready for its time in the
limelight.
llvm-svn: 61558