Tests with multiple benchmarks, like Embench [1], showed that the
CallPenalty magic number has the most influence on inlining decisions
when optimizing for size.
On the other hand, there was no good default value for this parameter.
Some benchmarks profited strongly from a reduced call penalty. On
example is the picojpeg benchmark compiled for RISC-V, which got 6%
smaller with a CallPenalty of 10 instead of 12. Other benchmarks
increased in size, like matmult.
This commit makes the compromise of turning the magic number constant of
CallPenalty into a configurable value. This introduces the flag
`--inline-call-penalty`. With that flag users can fine tune the inliner
to their needs.
The CallPenalty constant was also used for loops. This commit replaces
the CallPenalty constant with a new LoopPenalty constant that is now
used instead.
This is a slimmed down version of https://reviews.llvm.org/D30899
[1]: https://github.com/embench/embench-iot
Differential Revision: https://reviews.llvm.org/D105976
Instead of getting the VPValue for the stored IR values through the
current plan, use the stored value of the recipes directly.
This way, the correct VPValues are used if the store recipes have been
modified in the VPlan and the IR value is not correct any longer. This
can happen, e.g. due to D105008.
Add folds to instcombine to support the removal of select instruction when the masked_load is guaranteed to zero the same lanes, i.e. select(mask, mload(,,mask,0), 0) -> mload(,,mask,0).
Patch originally authored by @paulwalker-arm
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106376
This patch implements vector_splice in tablegen for all cases when the
Immediate is positive and lower than the known minimum value of
a scalable vector.
Vector_splice can be implemented using SVE instruction EXT.
For instance :
@llvm.experimental.vector.splice(Vector_1, Vector_2, Imm)
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E>
EXT Vector_1, Vector_2, Imm // Vector_1 = B, C, D + Vector_2 = E
Depends on D105633
Differential Revision: https://reviews.llvm.org/D106273
This patch implements vector_splice in tablegen for:
a) when the immediate is equal to -1 (Imm==1) and uses:
INSR + LASTB
For instance :
@llvm.experimental.vector.splice(Vector_1, Vector_2, -1)
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <D, E, F, G>
LAST RegLast, Vector_1 // RegLast = D
INSR Res, (Vector_1 >> 1), RegLast // Res = D + E, F, G
Differential Revision: https://reviews.llvm.org/D105633
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:
1. Tree-wise. This is the typical fast-math reduction that involves
continually splitting a vector up into halves and adding each
half together until we get a scalar result. This is the default
behaviour for integers, whereas for floating point we only do this
if reassociation is allowed.
2. Ordered. This now allows us to estimate the cost of performing
a strict vector reduction by treating it as a series of scalar
operations in lane order. This is the case when FP reassociation
is not permitted. For scalable vectors this is more difficult
because at compile time we do not know how many lanes there are,
and so we use the worst case maximum vscale value.
I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.
New tests have been added here:
Analysis/CostModel/AArch64/reduce-fadd.ll
Analysis/CostModel/AArch64/sve-intrinsics.ll
Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll
Differential Revision: https://reviews.llvm.org/D105432
This patch extends support for (scalable-vector) splats in the
DAGCombiner via the `ISD::matchBinaryPredicate` function, which enable a
variety of simple combines of constants.
Users of this function may now have to distinguish between
`BUILD_VECTOR` and `SPLAT_VECTOR` vector operands. The way of dealing
with this in-tree follows the approach added for
`ISD::matchUnaryPredicate` implemented in D94501.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D106575
to encode the constants for DW_AT_data_member_location.
Summary: In DWARF v3, DW_FORM_data4/8 in
DW_AT_data_member_location are interpreted as location
list pointers. Interpreting constants as pointers is
not expected, so we use DW_FORM_udata to encode the
constants.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D105687
Ensure that libSupport does not carry any static global initializer.
libSupport can be embedded in use cases where we don't want to load all
cl::opt unless we want to parse the command line.
ManagedStatic can be used to enable lazy-initialization of globals.
Summary: yaml2obj shouldn't create the string table that isn't needed
- doing so wastes time and disk space.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D106420
Ensure that libSupport does not carry any static global initializer.
libSupport can be embedded in use cases where we don't want to load all
cl::opt unless we want to parse the command line.
ManagedStatic can be used to enable lazy-initialization of globals.
The motivation for this caching wasn't clear, remove it in an effort to
simplify the code and make libSupport free of global dynamic constructor.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106206
If the branch isn't `unpredictable`, and it is predicted to *not* branch
to the block we are considering speculatively executing,
then it seems counter-productive to execute the code that is predicted not to be executed.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D106650
Makes clang crash: https://reviews.llvm.org/D105008#2903350
This reverts commit d2a73fb44ea0b8c981e4b923f811f18793fc4770.
Also revert a minor formatting follow-up:
This reverts commit 82834a673246f27a541ffcc57e0eb65b008102ef.
Begin replacing individual getMemIntrinsicNode calls and setup (for X86ISD::VBROADCAST_LOAD + X86ISD::SUBV_BROADCAST_LOAD opcodes) with this getBROADCAST_LOAD helper.
This patch introduces a new RAII struct that will temporarily make an OpenMP
RTL function have external linkage. This is done before the attributor is
invoked to prevent it from incorrectly removing some function definitions that
we will use later. For example, if we determine all calls to one function are
dead, because it has internal linkage it can safely be removed. Later when we
try to get an instance to that function to modify the source using
`getOrCreateRuntimeFunction` we will then get an empty declaration for that
function that won't be defined anywhere. This patch prevents this from
occurring.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106707
If the rotation amount is a known splat, perform the modulo on the splat source, and then perform the splat. That way the amount-extension performed later by LowerScalarVariableShift can fold the splats away without any multiple-use issues.
Fixes one of the concerns raised on D104156
Rather than adding methods for dropping these attributes in
various places, add a function that returns an AttrBuilder with
these attributes, which can then be used with existing methods
for dropping attributes. This is with an eye on D104641, which
also needs to drop them from returns, not just parameters.
Also be more explicit about the semantics of the method in the
documentation. Refer to UB rather than Undef, which is what this
is actually about.
From LangRef:
> if the parameter or return pointer is null, poison value is
> returned or passed instead. The nonnull attribute should be
> combined with the noundef attribute to ensure a pointer is not
> null or otherwise the behavior is undefined.
Dropping noundef is sufficient to prevent UB. Including nonnull
in this method just muddies the semantics.
Bug Fix for PR: https://llvm.org/PR47960
This patch makes sure that the fast math flag used in the 'select'
instruction is the same as the 'fabs' instruction after the transformation.
Differential Revision: https://reviews.llvm.org/D101727
This is a minimum extension of D106607 to allow folding for
2 non-zero constantsi that can be materialized as immediates..
In the reduced test examples, we save 1 instruction by rolling
the constants into LEA/ADD. In the motivating test from the bullet
benchmark, we absorb both of the constant moves into add ops via
LEA magic, so we reduce by 2 instructions.
Differential Revision: https://reviews.llvm.org/D106684
This patches fixes the warning:
llvm/include/llvm/Analysis/InlineCost.h:62:3: error: definition of
implicit copy assignment operator for 'CostBenefitPair' is
deprecated because it has a user-declared copy constructor
[-Werror,-Wdeprecated-copy]
by removing the explicit copy constructor.
As noticed on D105390 - we were hardwiring the depth limit for combining to VPERMI2W/VPERMI2B instructions. Not only had we made the limit too low, we hadn't accounted for slow/fast shuffles via the VariableCrossLaneShuffleDepth control
For types like s96, we don't want to clamp to s64, we want to first widen to
s128 and then narrow it. Otherwise we end up with impossible to legalize types.