Summary:
Add the necessary plumbing so that llvm_token_ty can be used as an
argument/return type in intrinsic definitions and correspondingly require
TokenTy in function types. TokenTy is an opaque type that has no target
lowering, but can be used in machine-independent intrinsics. It is
required for the upcoming llvm.eh.padparam intrinsic.
Reviewers: majnemer, rnk
Subscribers: stoklund, llvm-commits
Differential Revision: http://reviews.llvm.org/D12532
llvm-svn: 246651
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.
These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.
Naming suggestions at this point are welcome, I'm happy to re-run sed.
Reviewers: majnemer, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11011
llvm-svn: 241633
Summary:
This instruction encodes a loading operation that may fault, and a label
to branch to if the load page-faults. The locations of potentially
faulting loads and their "handler" destinations are recorded in a
FaultMap section, meant to be consumed by LLVM's clients.
Nothing generates FAULTING_LOAD_OP instructions yet, but they will be
used in a future change.
The documentation (FaultMaps.rst) needs improvement and I will update
this diff with a more expanded version shortly.
Depends on D10196
Reviewers: rnk, reames, AndyAyers, ab, atrick, pgavlin
Reviewed By: atrick, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10197
llvm-svn: 239740
cleanups.
Also, change code in tablegen which printed a message and then called
"exit(1)" to use PrintFatalError, instead.
This fixes instances where an empty output file was left behind after
a failed tablegen invocation, which would confuse subsequent ninja
runs into not attempting to rebuild.
Differential Revision: http://reviews.llvm.org/D9608
llvm-svn: 237058
The v1i128 type is needed for the quadword add/substract instructions introduced
in POWER8. Futhermore, the PowerPC ABI specifies that parameters of type v1i128
are to be passed in a single vector register, while parameters of type i128 are
passed in pairs of GPRs. Thus, it is necessary to be able to differentiate
between v1i128 and i128 in LLVM.
http://reviews.llvm.org/D8564
llvm-svn: 235198
Specifically, gc.result benefits from this greatly. Instead of:
gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...
We now have a gc.result.* that can specialize to literally any type.
Differential Revision: http://reviews.llvm.org/D7020
llvm-svn: 226857
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.
Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.
These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.
Reviewers: echristo, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D6493
llvm-svn: 225746
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 223348
This complicates a few algorithms due to not having random access, but
not by a huge degree I don't think (open to debate/design
discussion/etc).
llvm-svn: 223261
This is the second patch in a small series. This patch contains the MachineInstruction and x86-64 backend pieces required to lower Statepoints. It does not include the code to actually generate the STATEPOINT machine instruction and as a result, the entire patch is currently dead code. I will be submitting the SelectionDAG parts within the next 24-48 hours. Since those pieces are by far the most complicated, I wanted to minimize the size of that patch. That patch will include the tests which exercise the functionality in this patch. The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.
The STATEPOINT psuedo node is generated after all gc values are explicitly spilled to stack slots. The purpose of this node is to wrap an actual call instruction while recording the spill locations of the meta arguments used for garbage collection and other purposes. The STATEPOINT is modeled as modifing all of those locations to prevent backend optimizations from forwarding the value from before the STATEPOINT to after the STATEPOINT. (Doing so would break relocation semantics for collectors which wish to relocate roots.)
The implementation of STATEPOINT is closely modeled on PATCHPOINT. Eventually, much of the code in this patch will be removed. The long term plan is to merge the functionality provided by statepoints and patchpoints. Merging their implementations in the backend is likely to be a good starting point.
Reviewed by: atrick, ributzka
llvm-svn: 223085
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
llvm-svn: 222936
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 222632
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
Add MSBuiltin which is similar in vein to GCCBuiltin. This allows for adding
intrinsics for Microsoft compatibility to individual instructions. This is
needed to permit the creation of ARM specific MSVC extensions.
This is not currently in use, and requires an associated change in clang to
enable use of the intrinsics defined by this new class. This merely sets the
LLVM portion of the infrastructure in place to permit the use of this
functionality. A separate set of changes will enable the new intrinsics.
llvm-svn: 212350
These are used in the ARM backends to aid type-checking on patterns involving
intrinsics. By making sure one argument is an extended/truncated version of
another.
However, there's no reason to limit them to just vectors types. For example
AArch64 has the instruction "uqshrn sD, dN, #imm" which would naturally use an
intrinsic taking an i64 and returning an i32.
llvm-svn: 205003
The "noduplicate" function attribute exists to prevent certain optimizations
from duplicating calls to the function. This is important on platforms where
certain function call duplications are unsafe (for example execution barriers
for CUDA and OpenCL).
This patch makes it possible to specify intrinsics as "noduplicate" and
translates that to the appropriate function attribute.
llvm-svn: 204200
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
The convention used to specify the PowerPC ISA is that bits are numbered in
reverse order (0 is the index of the high bit). To support this "little endian"
encoding convention, CodeEmitterGen will reverse the bit numberings prior to
generating the encoding tables. In order to generate a disassembler,
FixedLenDecoderEmitter needs to do the same.
This moves the bit reversal logic out of CodeEmitterGen and into CodeGenTarget
(where it can be used by both CodeEmitterGen and FixedLenDecoderEmitter). This
is prep work for disassembly support in the PPC backend (which is the only
in-tree user of this little-endian encoding support).
llvm-svn: 197532
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
llvm-svn: 191263
Most places can use PrintFatalError as the unwinding mechanism was not
used for anything other than printing the error. The single exception
was CodeGenDAGPatterns.cpp, where intermediate errors during type
resolution were ignored to simplify incremental platform development.
This use is replaced by an error flag in TreePattern and bailout earlier
in various places if it is set.
llvm-svn: 166712
Currently, TableGen just guesses instruction properties when it can't
infer them form patterns.
This adds a guessInstructionProperties flag to the instruction set
definition that will be used to disable guessing. The flag is intended
as a migration aid. It will be removed again when no more targets need
their properties guessed.
llvm-svn: 162460
subtarget CPU descriptions and support new features of
MachineScheduler.
MachineModel has three categories of data:
1) Basic properties for coarse grained instruction cost model.
2) Scheduler Read/Write resources for simple per-opcode and operand cost model (TBD).
3) Instruction itineraties for detailed per-cycle reservation tables.
These will all live side-by-side. Any subtarget can use any
combination of them. Instruction itineraries will not change in the
near term. In the long run, I expect them to only be relevant for
in-order VLIW machines that have complex contraints and require a
precise scheduling/bundling model. Once itineraries are only actively
used by VLIW-ish targets, they could be replaced by something more
appropriate for those targets.
This tablegen backend rewrite sets things up for introducing
MachineModel type #2: per opcode/operand cost model.
llvm-svn: 159891