1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 14:33:02 +02:00
Commit Graph

1047 Commits

Author SHA1 Message Date
Michael Liao
581add45c0 Allow BB duplication threshold to be adjusted through JumpThreading's ctor
- BB duplication may not be desired on targets where there is no or small
  branch penalty and code duplication needs restrict control.

llvm-svn: 218375
2014-09-24 04:59:06 +00:00
David Blaikie
ddb5a46373 Reapply fix in r217988 (reverted in r217989) and remove the alternative fix committed in r217987.
This type isn't owned polymorphically (as demonstrated by making the
dtor protected and everything still compiling) so just address the
warning by protecting the base dtor and making the derived class final.

llvm-svn: 217990
2014-09-17 22:27:36 +00:00
David Blaikie
52fbb62253 Revert "Fix -Wnon-virtual-dtor warning introduced in r217982."
An alternative fix was already committed.

This reverts commit r217988.

llvm-svn: 217989
2014-09-17 22:17:59 +00:00
David Blaikie
97537830d4 Fix -Wnon-virtual-dtor warning introduced in r217982.
llvm-svn: 217988
2014-09-17 22:15:40 +00:00
Chris Bieneman
f8a6bd52aa Fixing the sanitizer build failure:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/12868/steps/annotate/logs/stdio

llvm-svn: 217987
2014-09-17 22:09:38 +00:00
Chris Bieneman
b486dadca0 Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.

Reviewers: chandlerc, resistor

Reviewed By: resistor

Subscribers: morisset, resistor, llvm-commits

Differential Revision: http://reviews.llvm.org/D5364

llvm-svn: 217982
2014-09-17 20:55:46 +00:00
Nick Lewycky
55d7c42814 Add control of function merging to the PMBuilder.
llvm-svn: 217731
2014-09-13 21:46:00 +00:00
Hal Finkel
21d1f99033 Add an AlignmentFromAssumptions Pass
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.

The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could).  Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).

llvm-svn: 217344
2014-09-07 20:05:11 +00:00
Hal Finkel
f8bb9b78cf Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

llvm-svn: 217342
2014-09-07 18:57:58 +00:00
Hal Finkel
6122fb79cb Add an Assumption-Tracking Pass
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.

The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.

There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.

This pass will be used by follow-up commits that make use of @llvm.assume.

llvm-svn: 217334
2014-09-07 12:44:26 +00:00
Hal Finkel
8a99aa5539 Feed AA to the inliner and use AA->getModRefBehavior in AddAliasScopeMetadata
This feeds AA through the IFI structure into the inliner so that
AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which
functions only access their arguments (instead of just hard-coding some
knowledge of memory intrinsics). Most of the information is only available from
BasicAA; this is important for preserving alias scoping information for
target-specific intrinsics when doing the noalias parameter attribute to
metadata conversion.

llvm-svn: 216866
2014-09-01 09:01:39 +00:00
Rafael Espindola
eb4cd5d130 Move some logic to populateLTOPassManager.
This will avoid code duplication in the next commit which calls it directly
from the gold plugin.

llvm-svn: 216211
2014-08-21 20:03:44 +00:00
Rafael Espindola
dd478b7122 Handle inlining in populateLTOPassManager like in populateModulePassManager.
No functionality change.

llvm-svn: 216178
2014-08-21 13:35:30 +00:00
Rafael Espindola
f79b5bf8bb Move DisableGVNLoadPRE from populateLTOPassManager to PassManagerBuilder.
llvm-svn: 216174
2014-08-21 13:13:17 +00:00
Rafael Espindola
7968b84e64 Sort declarations.
llvm-svn: 216171
2014-08-21 12:39:07 +00:00
Craig Topper
65775cc03d Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 216158
2014-08-21 05:55:13 +00:00
Craig Topper
aa7422b5a6 Revert "Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size."
Getting a weird buildbot failure that I need to investigate.

llvm-svn: 215870
2014-08-18 00:24:38 +00:00
Craig Topper
227456e133 Repace SmallPtrSet with SmallPtrSetImpl in function arguments to avoid needing to mention the size.
llvm-svn: 215868
2014-08-17 23:47:00 +00:00
Rafael Espindola
f8bee1313e Introduce a helper to combine instruction metadata.
Replace the old code in GVN and BBVectorize with it. Update SimplifyCFG to use
it.

Patch by Björn Steinbrink!

llvm-svn: 215723
2014-08-15 15:46:38 +00:00
Benjamin Kramer
da144ed5a2 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

llvm-svn: 215558
2014-08-13 16:26:38 +00:00
Rafael Espindola
e145188cc8 Don't internalize all but main by default.
This is mostly a cleanup, but it changes a fairly old behavior.

Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.

Now to get a usable behavior out of opt one doesn't need the funny
looking command line:

opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts

llvm-svn: 214919
2014-08-05 20:10:38 +00:00
Duncan P. N. Exon Smith
3f8034a1c9 Move -verify-use-list-order into llvm-uselistorder
Ugh.  Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though.  (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)

Create a new tool called llvm-uselistorder to use for verifying use-list
order.  For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.

This might be a better way to test use-list order anyway.

Part of PR5680.

llvm-svn: 213957
2014-07-25 17:13:03 +00:00
Duncan P. N. Exon Smith
64b8621170 IPO: Add use-list-order verifier
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.

  - The utility functions live in lib/IR/UseListOrder.cpp.

  - Moved (and renamed) the command-line option to enable writing
    use-lists, so that this pass can return early if the use-list orders
    aren't being serialized.

It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype.  I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.

This is part of PR5680.

llvm-svn: 213945
2014-07-25 14:49:26 +00:00
Gerolf Hoflehner
5fa7774dfd MergedLoadStoreMotion pass
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.

llvm-svn: 213396
2014-07-18 19:13:09 +00:00
Peter Collingbourne
5e27aab186 Give SplitBlockAndInsertIfThen the ability to update a domtree.
llvm-svn: 213045
2014-07-15 04:40:27 +00:00
Hal Finkel
661274e401 Feeding isSafeToSpeculativelyExecute its DataLayout pointer
isSafeToSpeculativelyExecute can optionally take a DataLayout pointer. In the
past, this was mainly used to make better decisions regarding divisions known
not to trap, and so was not all that important for users concerned with "cheap"
instructions. However, now it also helps look through bitcasts for
dereferencable loads, and will also be important if/when we add a
dereferencable pointer attribute.

This is some initial work to feed a DataLayout pointer through to callers of
isSafeToSpeculativelyExecute, generally where one was already available.

llvm-svn: 212720
2014-07-10 14:41:31 +00:00
Alexey Samsonov
bea2f2e5d8 Decouple llvm::SpecialCaseList text representation and its LLVM IR semantics.
Turn llvm::SpecialCaseList into a simple class that parses text files in
a specified format and knows nothing about LLVM IR. Move this class into
LLVMSupport library. Implement two users of this class:
  * DFSanABIList in DFSan instrumentation pass.
  * SanitizerBlacklist in Clang CodeGen library.
The latter will be modified to use actual source-level information from frontend
(source file names) instead of unstable LLVM IR things (LLVM Module identifier).

Remove dependency edge from ClangCodeGen/ClangDriver to LLVMTransformUtils.

No functionality change.

llvm-svn: 212643
2014-07-09 19:40:08 +00:00
Alexey Samsonov
ff7b6cd169 [ASan] Completely remove sanitizer blacklist file from instrumentation pass.
All blacklisting logic is now moved to the frontend (Clang).
If a function (or source file it is in) is blacklisted, it doesn't
get sanitize_address attribute and is therefore not instrumented.
If a global variable (or source file it is in) is blacklisted, it is
reported to be blacklisted by the entry in llvm.asan.globals metadata,
and is not modified by the instrumentation.

The latter may lead to certain false positives - not all the globals
created by Clang are described in llvm.asan.globals metadata (e.g,
RTTI descriptors are not), so we may start reporting errors on them
even if "module" they appear in is blacklisted. We assume it's fine
to take such risk:
  1) errors on these globals are rare and usually indicate wild memory access
  2) we can lazily add descriptors for these globals into llvm.asan.globals
     lazily.

llvm-svn: 212505
2014-07-08 00:50:49 +00:00
Alexey Samsonov
55fd79efac Remove top-level Clang -fsanitize= flags for optional ASan features.
Init-order and use-after-return modes can currently be enabled
by runtime flags. use-after-scope mode is not really working at the
moment.

The only problem I see is that users won't be able to disable extra
instrumentation for init-order and use-after-scope by a top-level Clang flag.
But this instrumentation was implicitly enabled for quite a while and
we didn't hear from users hurt by it.

llvm-svn: 210924
2014-06-13 17:53:44 +00:00
Alexey Samsonov
2ce8c2f26f Remove sanitizer blacklist from ASan/TSan/MSan function passes.
Instrumentation passes now use attributes
address_safety/thread_safety/memory_safety which are added by Clang frontend.
Clang parses the blacklist file and adds the attributes accordingly.

Currently blacklist is still used in ASan module pass to disable instrumentation
for certain global variables. We should fix this as well by collecting the
set of globals we're going to instrument in Clang and passing it to ASan
in metadata (as we already do for dynamically-initialized globals and init-order
checking).

This change also removes -tsan-blacklist and -msan-blacklist LLVM commandline
flags in favor of -fsanitize-blacklist= Clang flag.

llvm-svn: 210038
2014-06-02 18:08:27 +00:00
Karthik Bhat
d6622171c7 Allow vectorization of intrinsics such as powi,cttz and ctlz in Loop and SLP Vectorizer.
This patch adds support to vectorize intrinsics such as powi, cttz and ctlz in Vectorizer. These intrinsics are different from other
intrinsics as second argument to these function must be same in order to vectorize them and it should be represented as a scalar.
Review: http://reviews.llvm.org/D3851#inline-32769 and http://reviews.llvm.org/D3937#inline-32857

llvm-svn: 209873
2014-05-30 04:31:24 +00:00
Michael J. Spencer
0a1cb32d78 [LoadCombine] Missed a file.
llvm-svn: 209792
2014-05-29 02:05:37 +00:00
Michael J. Spencer
1510dc5700 Add LoadCombine pass.
This pass is disabled by default. Use -combine-loads to enable in -O[1-3]

Differential revision: http://reviews.llvm.org/D3580

llvm-svn: 209791
2014-05-29 01:55:07 +00:00
Owen Anderson
8782b6f52b Make the LoopRotate pass's maximum header size configurable both programmatically
and via the command line, mirroring similar functionality in LoopUnroll.  In
situations where clients used custom unrolling thresholds, their intent could
previously be foiled by LoopRotate having a hardcoded threshold.

llvm-svn: 209617
2014-05-26 08:58:51 +00:00
NAKAMURA Takumi
9badf10b6a Reformat linefeeds.
llvm-svn: 209609
2014-05-26 00:25:26 +00:00
NAKAMURA Takumi
2348278fc4 Trailing whitespace.
llvm-svn: 209608
2014-05-26 00:25:09 +00:00
Peter Collingbourne
e368465e8d Add an extension point for peephole optimizers.
This extension point allows adding passes that perform peephole optimizations
similar to the instruction combiner. These passes will be inserted after
each instance of the instruction combiner pass.

Differential Revision: http://reviews.llvm.org/D3905

llvm-svn: 209595
2014-05-25 10:27:02 +00:00
Benjamin Kramer
337b997df4 Flip on vectorization of bswap intrinsics.
The cost model conservatively assumes that it will always get scalarized and
that's about as good as we can get with the generic TTI; reasoning whether a
shuffle with an efficient lowering is available is hard. We can override that
conservative estimate for some targets in the future.

llvm-svn: 209125
2014-05-19 13:48:08 +00:00
NAKAMURA Takumi
8f399f2edb Reformat blank lines.
llvm-svn: 209106
2014-05-19 04:43:26 +00:00
NAKAMURA Takumi
47e5f91b36 Whitespace.
llvm-svn: 209105
2014-05-19 04:43:03 +00:00
Richard Smith
34ed6bf95c [modules] Add missing #include.
llvm-svn: 208276
2014-05-08 02:34:32 +00:00
Richard Smith
55381ccf0a Re-commit r208025, reverted in r208030, with a fix for a conformance issue
which GCC detects and Clang does not!

llvm-svn: 208033
2014-05-06 01:44:26 +00:00
Richard Smith
b38145eb67 Revert r208025, which made buildbots unhappy for unknown reasons.
llvm-svn: 208030
2014-05-06 01:26:00 +00:00
Richard Smith
e9d2d57a7c Add llvm::function_ref (and a couple of uses of it), representing a type-erased reference to a callable object.
llvm-svn: 208025
2014-05-06 01:01:29 +00:00
Karthik Bhat
4591b173c7 Vectorize intrinsic math function calls in SLPVectorizer.
This patch adds support to recognize and vectorize intrinsic math functions in SLPVectorizer.
Review: http://reviews.llvm.org/D3560 and http://reviews.llvm.org/D3559

llvm-svn: 207901
2014-05-03 09:59:54 +00:00
Nico Weber
fdced47a40 Teach GlobalDCE how to remove empty global_ctor entries.
This moves most of GlobalOpt's constructor optimization
code out of GlobalOpt into Transforms/Utils/CDtorUtils.{h,cpp}. The
public interface is a single function OptimizeGlobalCtorsList() that
takes a predicate returning which constructors to remove.

GlobalOpt calls this with a function that statically evaluates all
constructors, just like it did before. This part of the change is
behavior-preserving.

Also add a call to this from GlobalDCE with a filter that removes global
constructors that contain a "ret" instruction and nothing else – this
fixes PR19590.

llvm-svn: 207856
2014-05-02 18:35:25 +00:00
Eli Bendersky
0602e236ae Add an optimization that does CSE in a group of similar GEPs.
This optimization merges the common part of a group of GEPs, so we can compute
each pointer address by adding a simple offset to the common part.

The optimization is currently only enabled for the NVPTX backend, where it has
a large payoff on some benchmarks.

Review: http://reviews.llvm.org/D3462

Patch by Jingyue Wu.

llvm-svn: 207783
2014-05-01 18:38:36 +00:00
Craig Topper
c0a2a29f4e [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Karthik Bhat
a6070a9b75 Allow vectorization of bit intrinsics in BB Vectorizer.
This patch adds support for vectorization of  bit intrinsics such as bswap,ctpop,ctlz,cttz.

llvm-svn: 207174
2014-04-25 03:33:48 +00:00
Chandler Carruth
15c7b91ac2 [Modules] Make Support/Debug.h modular. This requires it to not change
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.

This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:

- Header files that need to provide a DEBUG_TYPE for some inline code
  can do so by defining the macro before their inline code and undef-ing
  it afterward so the macro does not escape.

- We no longer have rampant ODR violations due to including headers with
  different DEBUG_TYPE definitions. This may be mostly an academic
  violation today, but with modules these types of violations are easy
  to check for and potentially very relevant.

Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.

The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.

llvm-svn: 206822
2014-04-21 22:55:11 +00:00
Richard Smith
a71eaceeb1 Add missing #include found by modules build.
llvm-svn: 206726
2014-04-20 23:39:19 +00:00
Duncan P. N. Exon Smith
7063f2846a PMBuilder: Expose an option to disable tail calls
Adds API to allow frontends to disable tail calls in PassManagerBuilder.

<rdar://problem/16050591>

llvm-svn: 206542
2014-04-18 01:05:15 +00:00
Craig Topper
c2260fc0ab [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
llvm-svn: 206252
2014-04-15 06:32:26 +00:00
Craig Topper
30281a67fb [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
llvm-svn: 206142
2014-04-14 00:51:57 +00:00
Arnold Schwaighofer
1a503c9322 SLPVectorizer: Only vectorize intrinsics whose operands are widened equally
The vectorizer only knows how to vectorize intrinics by widening all operands by
the same factor.

Patch by Tyler Nowicki!

llvm-svn: 205855
2014-04-09 14:20:47 +00:00
Duncan P. N. Exon Smith
7f2af7c18b Revert "Reapply "LTO: add API to set strategy for -internalize""
This reverts commit r199244.

Conflicts:
	include/llvm-c/lto.h
	include/llvm/LTO/LTOCodeGenerator.h
	lib/LTO/LTOCodeGenerator.cpp

llvm-svn: 205471
2014-04-02 22:05:57 +00:00
Hal Finkel
dc0e116444 Move partial/runtime unrolling late in the pipeline
The generic (concatenation) loop unroller is currently placed early in the
standard optimization pipeline. This is a good place to perform full unrolling,
but not the right place to perform partial/runtime unrolling. However, most
targets don't enable partial/runtime unrolling, so this never mattered.

However, even some x86 cores benefit from partial/runtime unrolling of very
small loops, and follow-up commits will enable this. First, we need to move
partial/runtime unrolling late in the optimization pipeline (importantly, this
is after SLP and loop vectorization, as vectorization can drastically change
the size of a loop), while keeping the full unrolling where it is now. This
change does just that.

llvm-svn: 205264
2014-03-31 23:23:51 +00:00
Mark Seaborn
ade468f2c3 Remove LowerInvoke's obsolete "-enable-correct-eh-support" option
This option caused LowerInvoke to generate code using SJLJ-based
exception handling, but there is no code left that interprets the
jmp_buf stack that the resulting code maintained (llvm.sjljeh.jblist).
This option has been obsolete for a while, and replaced by
SjLjEHPrepare.

This leaves the default behaviour of LowerInvoke, which is to convert
invokes to calls.

Differential Revision: http://llvm-reviews.chandlerc.com/D3136

llvm-svn: 204388
2014-03-20 19:54:47 +00:00
Evgeniy Stepanov
4e42dcfe00 [msan] Origin tracking with history.
LLVM part of MSan implementation of advanced origin tracking,
when we record not only creation point, but all locations where
an uninitialized value was stored to memory, too.

llvm-svn: 204151
2014-03-18 13:30:56 +00:00
NAKAMURA Takumi
91b0695948 Untabify.
llvm-svn: 204020
2014-03-16 23:58:43 +00:00
Eli Bendersky
fa2b4f20f2 Move duplicated code into a helper function (exposed through overload).
There's a bit of duplicated "magic" code in opt.cpp and Clang's CodeGen that
computes the inliner threshold from opt level and size opt level.

This patch moves the code to a function that lives alongside the inliner itself,
providing a convenient overload to the inliner creation.

A separate patch can be committed to Clang to use this once it's committed to
LLVM. Standalone tools that use the inlining pass can also avoid duplicating
this code and fearing it will go out of sync.

Note: this patch also restructures the conditinal logic of the computation to
be cleaner.

llvm-svn: 203669
2014-03-12 16:12:36 +00:00
Alon Mishne
00d720ff32 Cloning a function now also clones its debug metadata if 'ModuleLevelChanges' is true.
llvm-svn: 203662
2014-03-12 14:42:51 +00:00
Craig Topper
a3683ec835 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202953
2014-03-05 09:10:37 +00:00
Chandler Carruth
075812f27c [Modules] Move CFG.h to the IR library as it defines graph traits over
IR types.

llvm-svn: 202827
2014-03-04 11:45:46 +00:00
Chandler Carruth
63713e9f95 [Modules] Move ValueMap to the IR library. While this class does not
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.

Ironically, the unittest is already in the right library.

llvm-svn: 202824
2014-03-04 11:26:31 +00:00
Chandler Carruth
649f6270aa [Modules] Move ValueHandle into the IR library where Value itself lives.
Move the test for this class into the IR unittests as well.

This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.

llvm-svn: 202821
2014-03-04 11:17:44 +00:00
Chandler Carruth
0bf5689f06 [Modules] Move GetElementPtrTypeIterator into the IR library. As its
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.

Another step of modularizing the support library.

llvm-svn: 202815
2014-03-04 10:40:04 +00:00
Diego Novillo
2ccb22f509 Pass to emit DWARF path discriminators.
DWARF discriminators are used to distinguish multiple control flow paths
on the same source location. When this happens, instructions across
basic block boundaries will share the same debug location.

This pass detects this situation and creates a new lexical scope to one
of the two instructions. This lexical scope is a child scope of the
original and contains a new discriminator value. This discriminator is
then picked up from MCObjectStreamer::EmitDwarfLocDirective to be
written on the object file.

This fixes http://llvm.org/bugs/show_bug.cgi?id=18270.

llvm-svn: 202752
2014-03-03 20:06:11 +00:00
Quentin Colombet
fc711dd23c [CodeGenPrepare] Move CodeGenPrepare into lib/CodeGen.
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.

Move CodeGenPrepare into libLLVMCodeGen to avoid that.

Follow-up of <rdar://problem/15519855>

llvm-svn: 201912
2014-02-22 00:07:45 +00:00
Rafael Espindola
d85e4eb0f5 Rename some member variables from TD to DL.
TargetData was renamed DataLayout back in r165242.

llvm-svn: 201581
2014-02-18 15:33:12 +00:00
Stephen Hines
e919f42bb2 Don't build DFSan functionality for Android.
llvm-svn: 201362
2014-02-13 21:21:09 +00:00
Chandler Carruth
b19a7319a9 [LPM] Fix PR18616 where the shifts to the loop pass manager to extract
LCSSA from it caused a crasher with the LoopUnroll pass.

This crasher is really nasty. We destroy LCSSA form in a suprising way.
When unrolling a loop into an outer loop, we not only need to restore
LCSSA form for the outer loop, but for all children of the outer loop.
This is somewhat obvious in retrospect, but hey!

While this seems pretty heavy-handed, it's not that bad. Fundamentally,
we only do this when we unroll a loop, which is already a heavyweight
operation. We're unrolling all of these hypothetical inner loops as
well, so their size and complexity is already on the critical path. This
is just adding another pass over them to re-canonicalize.

I have a test case from PR18616 that is great for reproducing this, but
pretty useless to check in as it relies on many 10s of nested empty
loops that get unrolled and deleted in just the right order. =/ What's
worse is that investigating this has exposed another source of failure
that is likely to be even harder to test. I'll try to come up with test
cases for these fixes, but I want to get the fixes into the tree first
as they're causing crashes in the wild.

llvm-svn: 200273
2014-01-28 01:25:38 +00:00
Chandler Carruth
3998de34a0 [LPM] Make LCSSA a utility with a FunctionPass that applies it to all
the loops in a function, and teach LICM to work in the presance of
LCSSA.

Previously, LCSSA was a loop pass. That made passes requiring it also be
loop passes and unable to depend on function analysis passes easily. It
also caused outer loops to have a different "canonical" form from inner
loops during analysis. Instead, we go into LCSSA form and preserve it
through the loop pass manager run.

Note that this has the same problem as LoopSimplify that prevents
enabling its verification -- loop passes which run at the end of the loop
pass manager and don't preserve these are valid, but the subsequent loop
pass runs of outer loops that do preserve this pass trigger too much
verification and fail because the inner loop no longer verifies.

The other problem this exposed is that LICM was completely unable to
handle LCSSA form. It didn't preserve it and it actually would give up
on moving instructions in many cases when they were used by an LCSSA phi
node. I've taught LICM to support detecting LCSSA-form PHI nodes and to
hoist and sink around them. This may actually let LICM fire
significantly more because we put everything into LCSSA form to rotate
the loop before running LICM. =/ Now LICM should handle that fine and
preserve it correctly. The down side is that LICM has to require LCSSA
in order to preserve it. This is just a fact of life for LCSSA. It's
entirely possible we should completely remove LCSSA from the optimizer.

The test updates are essentially accomodating LCSSA phi nodes in the
output of LICM, and the fact that we now completely sink every
instruction in ashr-crash below the loop bodies prior to unrolling.

With this change, LCSSA is computed only three times in the pass
pipeline. One of them could be removed (and potentially a SCEV run and
a separate LoopPassManager entirely!) if we had a LoopPass variant of
InstCombine that ran InstCombine on the loop body but refused to combine
away LCSSA PHI nodes. Currently, this also prevents loop unrolling from
being in the same loop pass manager is rotate, LICM, and unswitch.

There is one thing that I *really* don't like -- preserving LCSSA in
LICM is quite expensive. We end up having to re-run LCSSA twice for some
loops after LICM runs because LICM can undo LCSSA both in the current
loop and the parent loop. I don't really see good solutions to this
other than to completely move away from LCSSA and using tools like
SSAUpdater instead.

llvm-svn: 200067
2014-01-25 04:07:24 +00:00
Juergen Ributzka
818bab9511 Revert "Revert "Add Constant Hoisting Pass" (r200034)"
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.

llvm-svn: 200062
2014-01-25 02:02:55 +00:00
Hans Wennborg
e89eb1955d Revert "Add Constant Hoisting Pass" (r200034)
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.

We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.

llvm-svn: 200058
2014-01-25 01:18:18 +00:00
Juergen Ributzka
45b2cea1c9 Add Constant Hoisting Pass
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.

llvm-svn: 200034
2014-01-24 20:18:00 +00:00
Juergen Ributzka
cd77ee7cf2 Revert "Add Constant Hoisting Pass"
This reverts commit r200022 to unbreak the build bots.

llvm-svn: 200024
2014-01-24 18:40:30 +00:00
Juergen Ributzka
fa4fb4d6a4 Add Constant Hoisting Pass
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.

First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.

If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.

When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.

This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)

Reviewed by Eric

llvm-svn: 200022
2014-01-24 18:23:08 +00:00
Alp Toker
1c4b33e8e5 Fix known typos
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.

llvm-svn: 200018
2014-01-24 17:20:08 +00:00
Chandler Carruth
46bbc995de [LPM] Make LoopSimplify no longer a LoopPass and instead both a utility
function and a FunctionPass.

This has many benefits. The motivating use case was to be able to
compute function analysis passes *after* running LoopSimplify (to avoid
invalidating them) and then to run other passes which require
LoopSimplify. Specifically passes like unrolling and vectorization are
critical to wire up to BranchProbabilityInfo and BlockFrequencyInfo so
that they can be profile aware. For the LoopVectorize pass the only
things in the way are LoopSimplify and LCSSA. This fixes LoopSimplify
and LCSSA is next on my list.

There are also a bunch of other benefits of doing this:
- It is now very feasible to make more passes *preserve* LoopSimplify
  because they can simply run it after changing a loop. Because
  subsequence passes can assume LoopSimplify is preserved we can reduce
  the runs of this pass to the times when we actually mutate a loop
  structure.
- The new pass manager should be able to more easily support loop passes
  factored in this way.
- We can at long, long last observe that LoopSimplify is preserved
  across SCEV. This *halves* the number of times we run LoopSimplify!!!

Now, getting here wasn't trivial. First off, the interfaces used by
LoopSimplify are all over the map regarding how analysis are updated. We
end up with weird "pass" parameters as a consequence. I'll try to clean
at least some of this up later -- I'll have to have it all clean for the
new pass manager.

Next up I discovered a really frustrating bug. LoopUnroll *claims* to
preserve LoopSimplify. That's actually a lie. But the way the
LoopPassManager ends up running the passes, it always ran LoopSimplify
on the unrolled-into loop, rectifying this oversight before any
verification could kick in and point out that in fact nothing was
preserved. So I've added code to the unroller to *actually* simplify the
surrounding loop when it succeeds at unrolling.

The only functional change in the test suite is that we now catch a case
that was previously missed because SCEV and other loop transforms see
their containing loops as simplified and thus don't miss some
opportunities. One test case has been converted to check that we catch
this case rather than checking that we miss it but at least don't get
the wrong answer.

Note that I have #if-ed out all of the verification logic in
LoopSimplify! This is a temporary workaround while extracting these bits
from the LoopPassManager. Currently, there is no way to have a pass in
the LoopPassManager which preserves LoopSimplify along with one which
does not. The LPM will try to verify on each loop in the nest that
LoopSimplify holds but the now-Function-pass cannot distinguish what
loop is being verified and so must try to verify all of them. The inner
most loop is clearly no longer simplified as there is a pass which
didn't even *attempt* to preserve it. =/ Once I get LCSSA out (and maybe
LoopVectorize and some other fixes) I'll be able to re-enable this check
and catch any places where we are still failing to preserve
LoopSimplify. If this causes problems I can back this out and try to
commit *all* of this at once, but so far this seems to work and allow
much more incremental progress.

llvm-svn: 199884
2014-01-23 11:23:19 +00:00
Evgeniy Stepanov
5b1a672532 [asan] Remove -fsanitize-address-zero-base-shadow command line
flag from clang, and disable zero-base shadow support on all platforms
where it is not the default behavior.

- It is completely unused, as far as we know.
- It is ABI-incompatible with non-zero-base shadow, which means all
objects in a process must be built with the same setting. Failing to
do so results in a segmentation fault at runtime.
- It introduces a backward dependency of compiler-rt on user code,
which is uncommon and complicates testing.

This is the LLVM part of a larger change.

llvm-svn: 199371
2014-01-16 10:19:12 +00:00
Duncan P. N. Exon Smith
bb847bd59e Reapply "LTO: add API to set strategy for -internalize"
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll.  The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")).  This commit
fixes the bug.

The original commit message follows.

Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

llvm-svn: 199244
2014-01-14 18:52:17 +00:00
NAKAMURA Takumi
068c8352f7 Revert r199191, "LTO: add API to set strategy for -internalize"
Please update also Other/link-opts.ll, in next time.

llvm-svn: 199197
2014-01-14 09:40:18 +00:00
Duncan P. N. Exon Smith
95dadb39e4 LTO: add API to set strategy for -internalize
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

llvm-svn: 199191
2014-01-14 06:37:26 +00:00
Andrew Trick
e7f9f5556d Add support to indvars for optimizing sadd.with.overflow.
Split sadd.with.overflow into add + sadd.with.overflow to allow
analysis and optimization. This should ideally be done after
InstCombine, which can perform code motion (eventually indvars should
run after all canonical instcombines). We want ISEL to recombine the
add and the check, at least on x86.

This is currently under an option for reducing live induction
variables: -liv-reduce. The next step is reducing liveness of IVs that
are live out of the overflow check paths. Once the related
optimizations are fully developed, reviewed and tested, I do expect
this to become default.

llvm-svn: 197926
2013-12-23 23:31:49 +00:00
Kostya Serebryany
a148c8c9ed [asan] don't unpoison redzones on function exit in use-after-return mode.
Summary:
Before this change the instrumented code before Ret instructions looked like:
  <Unpoison Frame Redzones>
  if (Frame != OriginalFrame) // I.e. Frame is fake
     <Poison Complete Frame>

Now the instrumented code looks like:
  if (Frame != OriginalFrame) // I.e. Frame is fake
     <Poison Complete Frame>
  else
     <Unpoison Frame Redzones>

Reviewers: eugenis

Reviewed By: eugenis

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D2458

llvm-svn: 197907
2013-12-23 14:15:08 +00:00
Evgeniy Stepanov
0cd4eea1b6 Add an explicit insert point argument to SplitBlockAndInsertIfThen.
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.

llvm-svn: 197677
2013-12-19 13:29:56 +00:00
Matt Arsenault
afde586636 Fix missing C++ mode comment
llvm-svn: 197658
2013-12-19 05:32:44 +00:00
Yi Jiang
67f2e8e3f8 Enable double to float shrinking optimizations for binary functions like 'fmin/fmax'. Fix radar:15283121
llvm-svn: 197434
2013-12-16 22:42:40 +00:00
Kaelyn Uhrain
840aea3968 Fix a narrowing warning due to a type mismatch (size_t vs uint64).
lib/Transforms/Instrumentation/AddressSanitizer.cpp:1405:36: error: non-constant-expression cannot be narrowed from type 'uint64_t' (aka 'unsigned long long') to 'size_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]
    getAllocaSizeInBytes(AI),
    ^~~~~~~~~~~~~~~~~~~~~~~~

llvm-svn: 196623
2013-12-06 23:09:24 +00:00
Kostya Serebryany
fc32a3e5d2 [asan] rewrite asan's stack frame layout
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).

The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.

This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.

Reviewers: samsonov, dvyukov

Reviewed By: samsonov

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D2324

llvm-svn: 196568
2013-12-06 09:00:17 +00:00
Renato Golin
a4d4a4c44f Add #pragma vectorize enable/disable to LLVM
The intended behaviour is to force vectorization on the presence
of the flag (either turn on or off), and to continue the behaviour
as expected in its absence. Tests were added to make sure the all
cases are covered in opt. No tests were added in other tools with
the assumption that they should use the PassManagerBuilder in the
same way.

This patch also removes the outdated -late-vectorize flag, which was
on by default and not helping much.

The pragma metadata is being attached to the same place as other loop
metadata, but nothing forbids one from attaching it to a function
(to enable #pragma optimize) or basic blocks (to hint the basic-block
vectorizers), etc. The logic should be the same all around.

Patches to Clang to produce the metadata will be produced after the
initial implementation is agreed upon and committed. Patches to other
vectorizers (such as SLP and BB) will be added once we're happy with
the pass manager changes.

llvm-svn: 196537
2013-12-05 21:20:02 +00:00
Alexey Samsonov
66f3fd41ae Add forgotten header guards
llvm-svn: 196500
2013-12-05 12:52:32 +00:00
Richard Sandiford
82ac8f6b68 Add a Scalarizer pass.
llvm-svn: 195471
2013-11-22 16:58:05 +00:00
Michael Ilseman
0f69f39907 Add support for software expansion of 64-bit integer division instructions.
Patch by Dmitri Shtilman!

llvm-svn: 195116
2013-11-19 06:54:19 +00:00
Hal Finkel
2557302085 Add a loop rerolling flag to the PassManagerBuilder
This adds a boolean member variable to the PassManagerBuilder to control loop
rerolling (just like we have for unrolling and the various vectorization
options). This is necessary for control by the frontend. Loop rerolling remains
disabled by default at all optimization levels.

llvm-svn: 194966
2013-11-17 16:02:50 +00:00
Hal Finkel
cc70e01f05 Add a loop rerolling pass
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:

for (int i = 0; i < 3200; i += 5) {
  a[i]     += alpha * b[i];
  a[i + 1] += alpha * b[i + 1];
  a[i + 2] += alpha * b[i + 2];
  a[i + 3] += alpha * b[i + 3];
  a[i + 4] += alpha * b[i + 4];
}

and turn them into this:

for (int i = 0; i < 3200; ++i) {
  a[i] += alpha * b[i];
}

and loops like this:

for (int i = 0; i < 500; ++i) {
  x[3*i] = foo(0);
  x[3*i+1] = foo(0);
  x[3*i+2] = foo(0);
}

and turn them into this:

for (int i = 0; i < 1500; ++i) {
  x[i] = foo(0);
}

There are two motivations for this transformation:

  1. Code-size reduction (especially relevant, obviously, when compiling for
code size).

  2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.

The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.

This pass is not currently enabled by default at any optimization level.

llvm-svn: 194939
2013-11-16 23:59:05 +00:00
Diego Novillo
7b4e2dda6b SampleProfileLoader pass. Initial setup.
This adds a new scalar pass that reads a file with samples generated
by 'perf' during runtime. The samples read from the profile are
incorporated and emmited as IR metadata reflecting that profile.

The profile file is assumed to have been generated by an external
profile source. The profile information is converted into IR metadata,
which is later used by the analysis routines to estimate block
frequencies, edge weights and other related data.

External profile information files have no fixed format, each profiler
is free to define its own. This includes both the on-disk representation
of the profile and the kind of profile information stored in the file.
A common kind of profile is based on sampling (e.g., perf), which
essentially counts how many times each line of the program has been
executed during the run.

The SampleProfileLoader pass is organized as a scalar transformation.
On startup, it reads the file given in -sample-profile-file to
determine what kind of profile it contains.  This file is assumed to
contain profile information for the whole application. The profile
data in the file is read and incorporated into the internal state of
the corresponding profiler.

To facilitate testing, I've organized the profilers to support two file
formats: text and native. The native format is whatever on-disk
representation the profiler wants to support, I think this will mostly
be bitcode files, but it could be anything the profiler wants to
support. To do this, every profiler must implement the
SampleProfile::loadNative() function.

The text format is mostly meant for debugging. Records are separated by
newlines, but each profiler is free to interpret records as it sees fit.
Profilers must implement the SampleProfile::loadText() function.

Finally, the pass will call SampleProfile::emitAnnotations() for each
function in the current translation unit. This function needs to
translate the loaded profile into IR metadata, which the analyzer will
later be able to use.

This patch implements the first steps towards the above design. I've
implemented a sample-based flat profiler. The format of the profile is
fairly simplistic. Each sampled function contains a list of relative
line locations (from the start of the function) together with a count
representing how many samples were collected at that line during
execution. I generate this profile using perf and a separate converter
tool.

Currently, I have only implemented a text format for these profiles. I
am interested in initial feedback to the whole approach before I send
the other parts of the implementation for review.

This patch implements:

- The SampleProfileLoader pass.
- The base ExternalProfile class with the core interface.
- A SampleProfile sub-class using the above interface. The profiler
  generates branch weight metadata on every branch instructions that
  matches the profiles.
- A text loader class to assist the implementation of
  SampleProfile::loadText().
- Basic unit tests for the pass.

Additionally, the patch uses profile information to compute branch
weights based on instruction samples.

This patch converts instruction samples into branch weights. It
does a fairly simplistic conversion:

Given a multi-way branch instruction, it calculates the weight of
each branch based on the maximum sample count gathered from each
target basic block.

Note that this assignment of branch weights is somewhat lossy and can be
misleading. If a basic block has more than one incoming branch, all the
incoming branches will get the same weight. In reality, it may be that
only one of them is the most heavily taken branch.

I will adjust this assignment in subsequent patches.

llvm-svn: 194566
2013-11-13 12:22:21 +00:00
Chandler Carruth
f2e7a23acb Move the old pass manager infrastructure into a legacy namespace and
give the files a legacy prefix in the right directory. Use forwarding
headers in the old locations to paper over the name change for most
clients during the transitional period.

No functionality changed here! This is just clearing some space to
reduce renaming churn later on with a new system.

Even when the new stuff starts to go in, it is going to be hidden behind
a flag and off-by-default as it is still WIP and under development.

This patch is specifically designed so that very little out-of-tree code
has to change. I'm going to work as hard as I can to keep that the case.
Only direct forward declarations of the PassManager class are impacted
by this change.

llvm-svn: 194324
2013-11-09 12:26:54 +00:00
Hal Finkel
26ff1b7453 Add a runtime unrolling parameter to the LoopUnroll pass constructor
As with the other loop unrolling parameters (the unrolling threshold, partial
unrolling, etc.) runtime unrolling can now also be controlled via the
constructor. This will be necessary for moving non-trivial unrolling late in
the pass manager (after loop vectorization).

No functionality change intended.

llvm-svn: 194027
2013-11-05 00:08:03 +00:00
Rafael Espindola
24353f2de2 Use LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN instead of the "dso list".
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
  files.
* The linker tells LLVM which symbols are not used from other object files,
  but will be put in the dso symbol table if present.

GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.

LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.

This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
  global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.

llvm-svn: 193800
2013-10-31 20:51:58 +00:00
Alp Toker
54480d8824 Fix "existant" typos
llvm-svn: 193579
2013-10-29 02:35:28 +00:00
Rafael Espindola
34304975c5 Optimize more linkonce_odr values during LTO.
When a linkonce_odr value that is on the dso list is not unnamed_addr
we can still look to see if anything is actually using its address. If
not, it is safe to hide it.

This patch implements that by moving GlobalStatus to Transforms/Utils
and using it in Internalize.

llvm-svn: 193090
2013-10-21 17:14:55 +00:00
Rafael Espindola
a88c415234 Optimize linkonce_odr unnamed_addr functions during LTO.
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.

The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).

llvm-svn: 191922
2013-10-03 18:29:09 +00:00
Chandler Carruth
ee12d58370 Remove the very substantial, largely unmaintained legacy PGO
infrastructure.

This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.

Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.

llvm-svn: 191835
2013-10-02 15:42:23 +00:00
Chandler Carruth
d47d52e219 Remove the long, long defunct IR block placement pass.
This pass was based on the previous (essentially unused) profiling
infrastructure and the assumption that by ordering the basic blocks at
the IR level in a particular way, the correct layout would happen in the
end. This sometimes worked, and mostly didn't. It also was a really
naive implementation of the classical paper that dates from when branch
predictors were primarily directional and when loop structure wasn't
commonly available. It also didn't factor into the equation
non-fallthrough branches and other machine level details.

Anyways, for all of these reasons and more, I wrote
MachineBlockPlacement, which completely supercedes this pass. It both
uses modern profile information infrastructure, and actually works. =]

llvm-svn: 190748
2013-09-14 09:28:14 +00:00
Rafael Espindola
2a5c049416 Rename some variables to match the style guide.
I am about to patch this code, and this makes the diff far more readable.

llvm-svn: 189982
2013-09-04 20:08:46 +00:00
Hal Finkel
a22a21165f Disable unrolling in the loop vectorizer when disabled in the pass manager
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).

In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).

llvm-svn: 189499
2013-08-28 18:33:10 +00:00
Richard Sandiford
b195d89bde Turn MipsOptimizeMathLibCalls into a target-independent scalar transform
...so that it can be used for z too.  Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.

The pass is opt-in because at the moment it only handles sqrt.

llvm-svn: 189097
2013-08-23 10:27:02 +00:00
Matt Arsenault
1bfa3222e1 Fix assert with GEP ptr vector indexing structs
Also fix it calculating the wrong value. The struct index
is not a ConstantInt, so it was being interpreted as an array
index.

llvm-svn: 188713
2013-08-19 21:43:16 +00:00
Peter Collingbourne
aa48e92de9 Introduce SpecialCaseList::isIn overload for GlobalAliases.
Differential Revision: http://llvm-reviews.chandlerc.com/D1437

llvm-svn: 188688
2013-08-19 19:00:35 +00:00
Peter Collingbourne
ea402298e2 Remove SpecialCaseList::findCategory.
It turned out that I didn't need this for DFSan.

llvm-svn: 188646
2013-08-19 00:24:20 +00:00
Peter Collingbourne
905e1efbe5 DataFlowSanitizer: greylist is now ABI list.
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions.  The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown.  The other supported categories are
"functional", "discard" and "custom".

- "discard" -- This function does not write to (user-accessible) memory,
  and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
  memory, and the label of its return value is the union of the label of
  its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
  is called, where F is the name of the function.  This function may wrap
  the original function or provide its own implementation.

Differential Revision: http://llvm-reviews.chandlerc.com/D1345

llvm-svn: 188402
2013-08-14 18:54:12 +00:00
Nick Lewycky
eab287a60a Revert r187191, which broke opt -mem2reg on the testcases included in PR16867.
However, opt -O2 doesn't run mem2reg directly so nobody noticed until r188146
when SROA started sending more things directly down the PromoteMemToReg path.

In order to revert r187191, I also revert dependent revisions r187296, r187322
and r188146. Fixes PR16867. Does not add the testcases from that PR, but both
of them should get added for both mem2reg and sroa when this revert gets
unreverted.

llvm-svn: 188327
2013-08-13 22:51:58 +00:00
Alexey Samsonov
d27599b42b Remove unused SpecialCaseList constructors
llvm-svn: 188171
2013-08-12 11:50:44 +00:00
Alexey Samsonov
cdc0f339aa Add SpecialCaseList::createOrDie() factory and use it in sanitizer passes
llvm-svn: 188169
2013-08-12 11:46:09 +00:00
Alexey Samsonov
d27061d7e7 Introduce factory methods for SpecialCaseList
Summary:
Doing work in constructors is bad: this change suggests to
call SpecialCaseList::create(Path, Error) instead of
"new SpecialCaseList(Path)". Currently the latter may crash with
report_fatal_error, which is undesirable - sometimes we want to report
the error to user gracefully - for example, if he provides an incorrect
file as an argument of Clang's -fsanitize-blacklist flag.

Reviewers: pcc

Reviewed By: pcc

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D1327

llvm-svn: 188156
2013-08-12 07:49:36 +00:00
Peter Collingbourne
b706fc0966 Really unbreak Mac build.
llvm-svn: 187938
2013-08-07 23:41:13 +00:00
Peter Collingbourne
b1b5c66b4b Unbreak Mac build.
llvm-svn: 187937
2013-08-07 23:29:46 +00:00
Peter Collingbourne
efa9025062 DataFlowSanitizer; LLVM changes.
DataFlowSanitizer is a generalised dynamic data flow analysis.

Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own.  Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.

Differential Revision: http://llvm-reviews.chandlerc.com/D965

llvm-svn: 187923
2013-08-07 22:47:18 +00:00
Tom Stellard
e4e3be6f50 Factor FlattenCFG out from SimplifyCFG
Patch by: Mei Ye

llvm-svn: 187764
2013-08-06 02:43:45 +00:00
Peter Collingbourne
42b450c977 Introduce an optimisation for special case lists with large numbers of literal entries.
Our internal regex implementation does not cope with large numbers
of anchors very efficiently.  Given a ~3600-entry special case list,
regex compilation can take on the order of seconds.  This patch solves
the problem for the special case of patterns matching literal global
names (i.e. patterns with no regex metacharacters).  Rather than
forming regexes from literal global name patterns, add them to
a StringSet which is checked before matching against the regex.
This reduces regex compilation time by an order of roughly thousands
when reading the aforementioned special case list, according to a
completely unscientific study.

No test cases.  I figure that any new tests for this code should
check that regex metacharacters are properly recognised.  However,
I could not find any documentation which documents the fact that the
syntax of global names in special case lists is based on regexes.
The extent to which regex syntax is supported in special case lists
should probably be decided on/documented before writing tests.

Differential Revision: http://llvm-reviews.chandlerc.com/D1150

llvm-svn: 187732
2013-08-05 17:48:04 +00:00
Matt Arsenault
a93e2d4fd1 Minor address space code simplification.
Remove assertion that the verifier should catch.

llvm-svn: 187692
2013-08-03 01:03:12 +00:00
Matt Arsenault
05068436ba Teach EmitGEPOffset about address spaces
llvm-svn: 187662
2013-08-02 18:33:34 +00:00
Daniel Malea
619c2fa140 Fix parameter ordering bug in createDebugIRPass()
- Thanks to Ilia Filippov for pointing out the inconsistency!

llvm-svn: 187424
2013-07-30 16:16:11 +00:00
Chandler Carruth
379281ffcc Update comments for SSAUpdater to use the modern doxygen comment
standards for LLVM. Remove duplicated comments on the interface from the
implementation file (implementation comments are left there of course).
Also clean up, re-word, and fix a few typos and errors in the commenst
spotted along the way.

This is in preparation for changes to these files and to keep the
uninteresting tidying in a separate commit.

llvm-svn: 187335
2013-07-28 22:00:33 +00:00
Chandler Carruth
ca3736c604 Thread DataLayout through the callers and into mem2reg. This will be
useful in a subsequent patch, but causes an unfortunate amount of noise,
so I pulled it out into a separate patch.

llvm-svn: 187322
2013-07-28 06:43:11 +00:00
Nick Lewycky
3d5df03884 Reimplement isPotentiallyReachable to make nocapture deduction much stronger.
Adds unit tests for it too.

Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.

llvm-svn: 187283
2013-07-27 01:24:00 +00:00
Tom Stellard
8e98bf332b SimplifyCFG: Use parallel-and and parallel-or mode to consolidate branch conditions
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches.  The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.

Patch by: Mei Ye

llvm-svn: 187278
2013-07-27 00:01:07 +00:00
Rafael Espindola
ad8b23acd3 Respect llvm.used in Internalize.
The language reference says that:

"If a symbol appears in the @llvm.used list, then the compiler,
assembler, and linker are required to treat the symbol as if there is
a reference to the symbol that it cannot see"

Since even the linker cannot see the reference, we must assume that
the reference can be using the symbol table. For example, a user can add
__attribute__((used)) to a debug helper function like dump and use it from
a debugger.

llvm-svn: 187103
2013-07-25 03:23:25 +00:00
Chandler Carruth
a549ad0c21 Make the mem2reg interface use an ArrayRef as it keeps a copy of these
to iterate over.

llvm-svn: 186788
2013-07-21 08:37:58 +00:00
Chandler Carruth
cf50f83dfd Update mem2reg's comments to conform to the new doxygen standards. No
functionality changed.

llvm-svn: 186772
2013-07-20 22:20:05 +00:00
Peter Collingbourne
16d8086f72 Implement categories for special case lists.
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.

For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.

The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.

Differential Revision: http://llvm-reviews.chandlerc.com/D1092

llvm-svn: 185978
2013-07-09 22:03:17 +00:00
Peter Collingbourne
1d4db968ba Introduce a SpecialCaseList ctor which takes a MemoryBuffer to make
it more unit testable, and fix memory leak in the other ctor.

Differential Revision: http://llvm-reviews.chandlerc.com/D1090

llvm-svn: 185976
2013-07-09 22:03:09 +00:00
Peter Collingbourne
2321a4030c Rename BlackList class to SpecialCaseList and move it to Transforms/Utils.
Differential Revision: http://llvm-reviews.chandlerc.com/D1089

llvm-svn: 185975
2013-07-09 22:02:49 +00:00
Daniel Malea
8034788131 Remove limitation on DebugIR that made it require existing debug metadata.
- Build debug metadata for 'bare' Modules using DIBuilder
- DebugIR can be constructed to generate an IR file (to be seen by a debugger)
  or not in cases where the user already has an IR file on disk.

llvm-svn: 185193
2013-06-28 19:05:23 +00:00
Chandler Carruth
9788884067 Add a flag to defer vectorization into a phase after the inliner and its
CGSCC pass manager. This should insulate the inlining decisions from the
vectorization decisions, however it may have both compile time and code
size problems so it is just an experimental option right now.

Adding this based on a discussion with Arnold and it seems at least
worth having this flag for us to both run some experiments to see if
this strategy is workable. It may solve some of the regressions seen
with the loop vectorizer.

llvm-svn: 184698
2013-06-24 07:21:47 +00:00
Meador Inge
f58d6431f9 Remove the simplify-libcalls pass (finally)
This commit completely removes what is left of the simplify-libcalls
pass.  All of the functionality has now been migrated to the instcombine
and functionattrs passes.  The following C API functions are now NOPs:

  1. LLVMAddSimplifyLibCallsPass
  2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls

llvm-svn: 184459
2013-06-20 19:48:07 +00:00
Bill Wendling
4d82ecded8 Access the TargetLoweringInfo from the TargetMachine object instead of caching it. The TLI may change between functions. No functionality change.
llvm-svn: 184352
2013-06-19 21:07:11 +00:00
Matt Arsenault
fb5518e48b Move StructurizeCFG out of R600 to generic Transforms.
Register it with PassManager

llvm-svn: 184343
2013-06-19 20:18:24 +00:00
James Molloy
5ba1094838 Extend RemapInstruction and friends to take an optional new parameter, a ValueMaterializer.
Extend LinkModules to pass a ValueMaterializer to RemapInstruction and friends to lazily create Functions for lazily linked globals. This is a big win when linking small modules with large (mostly unused) library modules.

llvm-svn: 182776
2013-05-28 15:17:05 +00:00
Daniel Malea
22adabba07 Re-implement DebugIR in a way that does not subclass AssemblyWriter:
- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls

C/R: Paul Redmond

llvm-svn: 182617
2013-05-23 22:34:33 +00:00
Hal Finkel
cf203aeadb Rename LoopSimplify.h to LoopUtils.h
As discussed, LoopUtils.h is a better name.

llvm-svn: 182314
2013-05-20 20:46:30 +00:00
Hal Finkel
4692993a01 Expose InsertPreheaderForLoop from LoopSimplify to other passes
Other passes, PPC counter-loop formation for example, also need to add loop
preheaders outside of the regular loop simplification pass. This makes
InsertPreheaderForLoop a global function so that it can be used by other
passes.

No functionality change intended.

llvm-svn: 182299
2013-05-20 16:47:07 +00:00
Daniel Malea
5d26af5c26 Add DebugIR pass -- emits IR file and replace source lines with IR lines in MD
- requires existing debug information to be present
- fixes up file name and line number information in metadata
- emits a "<orig_filename>-debug.ll" succinct IR file (without !dbg metadata
  or debug intrinsics) that can be read by a debugger
- initialize pass in opt tool to enable the "-debug-ir" flag
- lit tests to follow

llvm-svn: 181467
2013-05-08 20:44:14 +00:00
Adrian Prantl
64b198a677 fix a typo that due to cu&paste quadrupled itself
rdar://problem/13056109

llvm-svn: 180618
2013-04-26 18:10:50 +00:00
Adrian Prantl
1a2b6a92ae Bugfix for the debug intrinsic handling in InstCombiner:
Since we can't guarantee that the original dbg.declare instrinsic
is removed by LowerDbgDeclare(), we need to make sure that we are
not inserting the same dbg.value intrinsic over and over.
This removes tons of redundant DIEs when compiling optimized code.

rdar://problem/13056109

llvm-svn: 180615
2013-04-26 17:48:33 +00:00
Nadav Rotem
9360cf35a9 Add an option -vectorize-slp-aggressive for running the BB vectorizer. Make -fslp-vectorize run the slp-vectorizer.
llvm-svn: 179508
2013-04-15 05:39:58 +00:00
Nadav Rotem
4628b1562a Rename the slp-vectorizer clang/llvm flags. No functionality change.
llvm-svn: 179505
2013-04-15 04:54:42 +00:00
Alexey Samsonov
e5e655ef63 [ASan] Allow disabling init-order checks for globals by source file name.
llvm-svn: 179280
2013-04-11 13:20:00 +00:00