ConstantInt values are always represented as constant ranges with a
single element. getConstantInt is obsolete, as pointed out by @nikic
during D60581.
Reviewers: nikic
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D74329
LoopCacheAnalysis currently assumes the loop will be iterated over in
a forward direction. This patch addresses the issue by using the
absolute value of the stride when iterating backwards.
Note: this patch will treat negative and positive array access the
same, resulting in the same cost being calculated for single and
bi-directional access patterns. This should be improved in a
subsequent patch.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D73064
Each function is with this compiled with the SystemZSubtarget initialized
from the functions attributes.
Review: Ulrich Weigand.
Differential Revision: https://reviews.llvm.org/D74086
Non-AVX512BW targets failed to concatenate 256-bit shifts back to 512-bits (split during 512-bit shuffle lowering as they don't have v32i16/v64i8 types).
This reverts commit b54a8ec1bcd3689771c847cb37515b627034e518.
The commit triggered debug invariance (different output with/without
-g). The patch seems to have exposed a pre-existing invariance problem
in GlobalOpt, which I'll write a bug report for.
These are generated and do not need to have the same values.
We are defining separate subregs for R600 and GCN but then
using AMDGPU subregs on R600.
Differential Revision: https://reviews.llvm.org/D74248
As noted on PR44379, we didn't attempt to lower vector shuffles using bit rotations on XOP/AVX512F targets.
This patch lowers to uniform ISD:ROTL nodes - ROTR isn't supported by XOP and they are interchangeable for constant values anyway.
There might be cases where targets without ISD:ROTL support would benefit from this (expanding to SRL+SHL+OR), which I'll investigate in a future patch.
REAPPLIED rGe82e17d4d4ca after reversion at rG39eade73a567 - fixed offset matching in matchShuffleAsBitRotate.
This breaks under asan, see http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/38597/steps/check-clang%20asan/logs/stdio
This reverts commit bb5045429545f47a76980864322a637c31594c7f.
Revert "[FIX] Ordering problem accidentally introduced with D72304"
This reverts commit 08c0a06d8f375e48d4acebac886bfdf19a2276ed.
Revert "[OpenMP][OMPIRBuilder] Add Directives (master and critical) to OMPBuilder."
This reverts commit e8a436c5ea26f69378e4c1cf3ddb5b647b201e0f.
If a debug line section with version of greater than 5 is encountered,
prior to this change the parser would accept it and treat it as version
5. This might work to some extent, but then it might not at all, as it
really depends on the format of the unspecified future version, which
will be different (otherwise there would be no point in changing the
version number). Any information we could provide has a good chance of
being invalid, so we should just refuse to parse such tables.
Reviewed by: dblaikie, MaskRay
Differential Revision: https://reviews.llvm.org/D74204
This patch makes the following System Registers Read Only:
- CurrentEL
- ICH_MISR_EL2
- PMBIDR_EL1
- PMSIDR_EL1
as found in:
https://developer.arm.com/docs/ddi0595/e/aarch64-system-registers
Relative line numbers were also added to the tests so we get more
informative error messages on failure.
Change-Id: I963b4f01ca5737b58f9e8e7abe9ca1d99e328758
Add a simplification to fuse a manual vector extract with shifts and
truncate into a bitcast.
Unpacking and packing values into vectors is only optimized with
extractelement instructions, not when manually unpacked using shifts
and truncates.
This patch simplifies shifts and truncates into a bitcast if possible.
Simplify (build_vec (trunc $1)
(trunc (srl $1 width))
(trunc (srl $1 (2 * width))) ...)
to (bitcast $1)
Differential Revision: https://reviews.llvm.org/D73892
The DebugInfo/dwarfdump-invalid-line-table test used a pre-canned binary
generated by a fuzzer to demonstrate a bug fix. Unfortunately, the
binary is rigid and requires hand-editing if we change behaviour, such
as rejecting certain properties within it (as I plan on doing in another
change).
Rather than hand-edit the binary, I have replaced it with two tests. The
first tests the high-level code path from the debug line parser that
produces the same error as this test previously did, and the second is a
set of unit test cases that comprehensively cover the
FormValue::skipValue method, which in turn covers the area that the
original bug fix touched.
Reviewed by: MaskRay, dblaikie
Differential Revision: https://reviews.llvm.org/D74202
This change implements the llvm intrinsic llvm.read_register for
the SystemZ platform which returns the value of the specified
register
(http://llvm.org/docs/LangRef.html#llvm-read-register-and-llvm-write-register-intrinsics).
This implementation returns the value of the stack register, and
can be extended to return the value of other registers. The
implementation for this intrinsic exists on various other platforms
including Power, x86, ARM, etc. but missing on SystemZ.
Reviewers: uweigand
Differential Revision: https://reviews.llvm.org/D73378
On macOS, libc++ headers are distributed with the compiler, not
the sysroot. Without this, compiling a file that includes something
like <string> won't compile with gn-built clang without manual tweaks.
I used to do the manual tweaks, but now that other people are starting
to use this on mac, let's make it Just Work.
(This is marginally nicer than the cmake build now in that you can
just build 'clang' and it'll do the right thing.)
Differential Revision: https://reviews.llvm.org/D74247
As noted on PR44379, we didn't attempt to lower vector shuffles using bit rotations on XOP/AVX512F targets.
This patch lowers to uniform ISD:ROTL nodes - ROTR isn't supported by XOP and they are interchangeable for constant values anyway.
There might be cases where targets without ISD:ROTL support would benefit from this (expanding to SRL+SHL+OR), which I'll investigate in a future patch.
Also, non-AVX512BW targets fail to concatenate 256-bit rotations back to 512-bits (split during shuffle lowering as they don't have v32i16/v64i8 types).
---
Internal shuffle tests indicate theres a bug somewhere that I haven't been able to track down yet.
This patch adds a first version of a MemorySSA based DSE. It is missing
a lot of features, which will get added as follow-ups, to help to keep
the review manageable.
The patch uses the following general approach: given a MemoryDef, walk
upwards to find clobbering MemoryDefs that may be killed by the
starting def. Then check that there are no uses that may read the
location of the original MemoryDef in between both MemoryDefs. A bit
more concretely:
For all MemoryDefs StartDef:
1. Get the next dominating clobbering MemoryDef (DomAccess) by walking upwards.
2. Check that there no reads between DomAccess and the StartDef by checking
all uses starting at DomAccess and walking until we see StartDef.
3. For each found DomDef, check that:
1. There are no barrier instructions between DomDef and StartDef (like
throws or stores with ordering constraints).
2. StartDef is executed whenever DomDef is executed.
3. StartDef completely overwrites DomDef.
4. Erase DomDef from the function and MemorySSA.
The patch uses a very simple approach to guarantee that no throwing
instructions are between 2 stores: We only allow accesses to stack
objects, access that are in the same basic block if the block does not
contain any throwing instructions or accesses in functions that do
not contain any throwing instructions. This will get lifted later.
Besides adding support for the missing cases, there is plenty of additional
potential for improvements as follow-up work, e.g. the way we visit stores
(could be just a traversal of the MemorySSA, rather than collecting them
up-front), using the alias information discovered during walking to optimize
the MemorySSA.
This is loosely based on D40480 by Dave Green.
Reviewers: dmgreen, rnk, efriedma, bryant, asbirlea, Tyker
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D72700
This copies the DSE tests into a MSSA subdirectory to test the MemorySSA
backed DSE implementation, without disturbing the original tests.
Differential Revision: https://reviews.llvm.org/D72145
Summary:
Proposal and roadmap towards vector predication in LLVM.
This patch documents that
a) It is recognized that current LLVM is ill-equipped for vector predication.
b) The community is working on a solution.
c) A concrete prototype exists in the VP extension (D57504).
Reviewers: rkruppe, rengolin, cameron.mcinally, SjoerdMeijer, andrew.w.kaylor, craig.topper, sdesmalen, k-ishizaka, lattner, fhahn
Reviewed By: andrew.w.kaylor
Subscribers: rogfer01, merge_guards_bot, simoncook, s.egerton, llvm-commits, efocht
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73889
When specifying -march=arch[8|9|10], those CPU types do NOT support
the vector extension. In this case the vector ABI must be disabled.
The generated data layout should NOT contain 64-v128.
Reviewers: uweigand
Differential Revision: https://reviews.llvm.org/D74146
Use the isCandidateForCallSiteEntry().
This should mostly be an NFC, but there are some parts ensuring
the moveCallSiteInfo() and copyCallSiteInfo() operate with call site
entry candidates (both Src and Dest should be the call site entry
candidates).
Differential Revision: https://reviews.llvm.org/D74122
Based on D72931
This adds a new feature called A16 which is enabled for gfx10.
gfx9 keeps the R128A16 feature so it can share all the instruction encodings
with gfx7/8.
Differential Revision: https://reviews.llvm.org/D73956
This is a minimal but important advancement over the existing code. A
cast with an operand that is only used in the cast retains the no-alias
property of the operand.
Traversing PHI nodes is natural with the genericValueTraversal but also
a bit tricky. The problem is similar to the ones we have seen in AAAlign
and AADereferenceable, namely that we continue to increase the range in
each iteration. We use a pessimistic approach here to stop the
iterations. Nevertheless, optimistic information can now be propagated
through a PHI node.
The change is performed as stated by the FIXME and the tests are
adjusted. All changes look fine to me and values can be inferred as
undef without it being an error.
Casts can be handled natively by the ConstantRange class. We do limit it
to extends for now as we assume an integer type in different locations.
A TODO and a test case with a FIXME was added to remove that restriction
in the future.