The 'nobuiltin' attribute is applied to call sites to indicate that LLVM should
not treat the callee function as a built-in function. I.e., it shouldn't try to
replace that function with different code.
llvm-svn: 175835
pass. One of the callers of isKilled() can cope with overapproximation of kills
and the other can't, so I added a flag to indicate this.
In theory this could pessimize code slightly, but in practice most physical
register uses are kills, and most important kills of physical registers are the
only uses of that register prior to register allocation, so we can recognize
them as kills even without kill flags.
This is relevant because LiveIntervals gets rid of all kill flags.
llvm-svn: 175821
to lib/DebugInfo, with dumping in llvm-dwarfdump. This patch adds
initial ability to parse and dump CFA instructions contained in
entries.
To keep it manageable, the patch omits some more advanced capabilities
(accounted in TODOs):
* Parsing of instructions with BLOCK arguments (expression lists)
* Dumping of actual instruction arguments (currently only names are
dumped). This is quite tricky since the dumper has to effectively
"interpret" the instructions.
llvm-svn: 175820
After cleaning up the following type hierarchies:
* TypeLoc: r175462
* SVal: r175594
* CFGElement: r175462
* ProgramPoint: r175812
that all invoked undefined behavior by causing a derived copy construction of a
base object through an invalid cast (thus supporting code that relied on
casting temporaries that were direct base objects) Clang/LLVM is now clean of
casts of temporaries. So here's some fun SFINAE machinery (courtesy of Eli
Friedman, with some porting back from C++11 to LLVM's traits by me) to cause
compile-time failures if llvm::cast & friends are ever passed an rvalue.
This should avoid a repeat of anything even remotely like PR14321/r168124.
Thanks to Jordan Rose for the help with the various Static Analyzer related
hierarchies that needed cleaning up, Eli for the SFINAE, Richard Smith, John
McCall, Ted Kremenek, and Anna Zaks for their input/reviews/patience along the
way.
llvm-svn: 175819
Storing the load/store instructions with the values
and inspect them using Alias Analysis to make sure
they don't alias, since the GEP pointer operand doesn't
take the offset into account.
Trying hard to not add any extra cost to loads and stores
that don't overlap on global values, AA is *only* calculated
if all of the previous attempts failed.
Using biggest vector register size as the stride for the
vectorization access, as we're being conservative and
the cost model (which calculates the real vectorization
factor) is only run after the legalization phase.
We might re-think this relationship in the future, but
for now, I'd rather be safe than sorry.
llvm-svn: 175818
be set to zero that is what it was intended. Should improve performance of
the data structure when clear is invoked frequently (both compile time and
memory usage).
llvm-svn: 175799
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
llvm-svn: 175788
This fixes some problems with too conservative checking where we were
marking all aliases of a register as used, and then also checking all
aliases when allocating a register.
<rdar://problem/13249625>
llvm-svn: 175782
Large code model is identical to medium code model except that the
addis/addi sequence for "local" accesses is never used. All accesses
use the addis/ld sequence.
The coding changes are straightforward; most of the patch is taken up
with creating variants of the medium model tests for large model.
llvm-svn: 175767
exists solely to enable it to call itself for i8 with some registers.
The proposed patch simplifies the function somewhat to make the High
bit only meaningful for the i8 mode, which makes sense. No functional
difference (getX86SubSuperRegister is not getting called from anywhere
outside with i64 and High=true).
llvm-svn: 175762
A legal BUILD_VECTOR goes in and gets constant folded into another legal
BUILD_VECTOR so we don't lose any legality here. The problematic PPC
optimization that made this check necessary was fixed recently.
llvm-svn: 175759
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175758
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175757
It actually fixes quite a bunch of piglit tests.
This is a candidate for the mesa-stable branch.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175756
Instead of using custom inserters, it's simpler and
should make DAG folding easier.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175755
v2: put implicit parameters in []
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175754
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175753
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175752
Order the classes and add asm operands.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175751
Fixing asm operation names.
v2: fix name of the e64 encoding, also add asm operands
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175750
Fixing asm operation names.
v2: use ZERO constant, also add asm operands
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175749
Fixing asm operation names.
v2: use ZERO constant, also add asm operands
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175748
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175747
Those two files got mixed up.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 175746
Fixes for-loop.cl piglit test
Patch By: Vincent Lejeune
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
NOTE: This is a candidate for the Mesa stable branch.
llvm-svn: 175742
available.
With this commit there are no longer any assertion or verifier failures when
running 'make check' without LiveVariables. There are still 56 failing tests
with codegen differences and 1 unexpectedly passing test.
llvm-svn: 175719
The constructs %hi() and %lo() represent the high and low 16
bits of the address.
Because the 16 bit offset field of an LW instruction is
interpreted as signed, if bit 15 of the low part is 1 then the
low part will act as a negative and 1 needs to be added to the
high part.
Contributer: Vladimir Medic
llvm-svn: 175707
This patch implements the PPCDAGToDAGISel::PostprocessISelDAG virtual
method to perform post-selection peephole optimizations on the DAG
representation.
One optimization is implemented here: folds to clean up complex
addressing expressions for thread-local storage and medium code
model. It will also be useful for large code model sequences when
those are added later. I originally thought about doing this on the
MI representation prior to register assignment, but it's difficult to
do effective global dead code elimination at that point. DCE is
trivial on the DAG representation.
A typical example of a candidate code sequence in assembly:
addis 3, 2, globalvar@toc@ha
addi 3, 3, globalvar@toc@l
lwz 5, 0(3)
When the final instruction is a load or store with an immediate offset
of zero, the offset from the add-immediate can replace the zero,
provided the relocation information is carried along:
addis 3, 2, globalvar@toc@ha
lwz 5, globalvar@toc@l(3)
Since the addi can in general have multiple uses, we need to only
delete the instruction when the last use is removed.
llvm-svn: 175697